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Changelog

Version 2.1.0 (23/09/2025)

• The implementations of RYDE have been improved (performance speed-up
and bug fixing). RYDE parameters have been updated to adjust the perfor-
mance/size trade-offs offered by the scheme.

Version 2.0.1 (02/06/2025)

• The implementations of RYDE have been improved (performance speed-up,
fixing constant-time issues, removing dynamic allocation...).

Version 2.0.0 (05/02/2025)

• The design of RYDE have been improved and now relies on the TCitH frame-
work [FR23b,FR23a] (or alternatively the VOLEitH framework) along with
the Dual Support Modeling [BFG+24]. As a result, RYDE signature sizes
have been significantly reduced.

• Romaric Neveu have joined the RYDE team.
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1 Introduction

RYDE is a post-quantum digital signature scheme based on the hardness of the
Rank Syndrome Decoding (RSD). Informally, given a syndrome y and a parity-
check matrix H, the Rank Syndrome Decoding problem asks to find an error x
of small rank weight, whose syndrome is y. RYDE relies on a Zero-Knowledge
Proof of Knowledge (ZKPoK) of an RSD solution. This ZKPoK is based on the
Multi Party Computation in the Head (MPCitH) paradigm [IKOS07]. In partic-
ular, RYDE relies on the Threshold Computation in the Head (TCitH) frame-
work [FR23b,FR23a]. A variant using VOLE in the Head (VOLEitH) frame-
work [BBD+23] is also described. The ZKPoK is then converted into a signature
scheme using the Fiat-Shamir transform [FS87].

This document is structured as follows. We present in Section 2 the mathe-
matical background and the notations we will use. Then, Sections 3 and 4 deal
with the high-level description and the detailed algorithmic description of the
scheme respectively. Sections 5 and 6 are dedicated to the parameters and the
performances of RYDE. A security analysis of RYDE is provided in Sections 7
and best known attacks are presented in Section 8. Finally, in Section 9, we
summarize the main advantages and limitations of RYDE.
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2 Mathematical Background and Notation

2.1 Notation

We summarize the main mathematical notations in Table 1. We employ lower-
case and upper-case bold letters for rows vectors and matrices, respectively.

Symbol Meaning

{0, 1}ℓ Set of binary strings of length ℓ.

{0, 1}∗ Set of binary strings of finite length.

Fq The finite field of q elements.

Fnc×nr
q The vector space of nc × nr matrices over the field Fq.

0nc×nr The nc × nr zero matrix.

Is The s× s identity matrix.

M⊤ The transposed matrix of M

rank(M) The rank of the matrix M .

(A | B) The matrix obtained by juxtaposing the matrices A and B.

log The logarithm in base 2.

⊗ Bitwise multiplication (AND).

⊕ Bitwise addition (XOR).

Table 1. Mathematical notation.

2.2 The Rank Syndrome Decoding problem

It is first fitting to recall some background about the Rank Metric.

Definition 1 (Rank Metric over Fnqm). Let x = (x1, . . . , xn) ∈ Fnqm , and
B = (b1, . . . , bm) ∈ Fmqm an Fq-basis of Fqm . Each coordinate xj can be associated
with a vector (xj,1, . . . , xj,m) ∈ Fmq such that xj =

∑m
i=1 xj,ibi. Let us define the

following notations:

– Mx = (xj,i)(j,i)∈[1,n]×[1,m] is the matrix associated to the vector x;

– the rank weight is defined as: wR
(
x
)
= rank(Mx);

– the distance between two vectors x and y in Fnqm is: d(x, y) = wR
(
x− y

)
;

– the support of a vector Supp(x) is the Fq-linear subspace of Fqm generated
by its coordinates: Supp(x) = ⟨x1, . . . , xn⟩.

Definition 2. A linear code C over Fqm of dimension k and length n is a linear
subspace of Fnqm of dimension k. The elements of C are called codewords. The
code C can be represented in two ways:
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– by a generator matrix G, where C = {mG,m ∈ Fkqm}, or
– by a parity-check matrix H ∈ F(n−k)×n

qm where C = {x ∈ Fnqm : Hx⊤ = 0⊤}

We now continue by formally recalling the definition of the rank syndrome
decoding (RSD) problem.

Definition 3 (RSD problem). Let q, m, n, k and r be positive integers. Let

H
$←− F(n−k)×n

qm and x
$←− Fnqm such that wR

(
x
)
= r. Let y⊤ = Hx⊤. Given

(H,y), the computational RSD(q,m, n, k, r) problem asks to find a vector x̃ ∈
Fnqm such that Hx̃⊤ = y⊤ and wR

(
x̃
)
= r.

The RYDE signature schemes relies on a variant of the RSD problem, namely,
the RSDs variant. This variant reduces in polynomial-time to RSD [BFG+24].

Definition 4 (RSDs problem). Let q, m, n, k and r be positive integers. Let

H
$←− F(n−k)×n

qm and x = (xi)
$←− Fnqm such that wR

(
x
)
= r, x1 = 1 ∈ Fqm

and ⟨x1, . . . , xr⟩Fq
= Supp(x). Let y⊤ = Hx⊤. Given (H,y), the computational

RSDs(q,m, n, k, r) problem asks to find a vector x̃ ∈ Fnqm such that Hx̃⊤ = y⊤

and wR
(
x̃
)
= r.
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3 High-Level Description of RYDE

In this section, we provide a high-level description of the RYDE signature scheme.
This scheme is built by applying the Fiat-Shamir transformation on top of a
zero-knowledge proof of knowledge for a solution to a Rank Syndrome Decoding
instance. The underlying proof system uses the TCitH [FR23b,FR23a] frame-
work while parameters using the VOLEitH [BBD+23] framework are given in
Appendix A.

3.1 TCitH Framework in the PIOP Formalism

The MPCitH paradigm [IKOS07] is a versatile method introduced in 2007 to
build zero-knowledge proof systems using techniques from secure multi-party
computation (MPC). This paradigm has been drastically improved in recent
years and is particularly efficient to build zero-knowledge proofs for small circuits
such as those involved in (post-quantum) signature schemes. The more recent
MPCitH-based frameworks are the VOLE-in-the-Head (VOLEitH) framework
from [BBD+23] and the Threshold-Computation-in-the-Head (TCitH) frame-
work from [FR23b,FR23a].

In this subsection, we will describe the general proof system on which RYDE
is relying on. In what follows, we present this proof system using the formalism
of the Polynomial Interactive Oracle Proofs (PIOP), as presented in [Fen24].
Indeed, while the TCitH and VOLEitH frameworks have been respectively in-
troduced using a sharing-based and a VOLE-based formalism, one can unify
those two frameworks using the PIOP formalism, which enables us to have a
description that does not depend on MPC technologies1, leading to an easier-to-
understand scheme for those who do not already know those two frameworks.

Let us assume that we want to build an interactive zero-knowledge proof that
would enable a prover to convince a verifier that he knows a witness w ∈ Fnq
which satisfies some public polynomial relations:

for all 1 ≤ j ≤ m, fj(w) = 0,

where f1, . . . , fm are polynomials over Fq of total degree at most d. Let us
consider two proof parameters N,µ ∈ N such that N ≤ 2µ. The proof system
we consider is the following:

1. For all 1 ≤ j ≤ n, the prover samples a random degree-1 polynomials Pj
such that Pj(X) = wj ·X+(wbase)j for some (wbase)j ∈ Fqµ . He also samples
a random degree-(d − 1) polynomial P0 ∈ Fqµ [X]. He commits to those
polynomials.

1 In the TCitH framework, instead of performing operations over Shamir’s secret shar-
ings, we can directly work over their underlying polynomials. In the VOLEitH frame-
work, instead of performing operations over VOLE gadgets, we can directly work
over their underlying degree-1 polynomial.
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2. The verifier chooses random coefficients γ1, . . . , γm from Fqµ and sends them
to the prover. The latter then reveals the degree-(d − 1) polynomial Q(X)
defined as

Q(X) = P0(X) +

m∑
j=1

γj · f [h]j (X,P1(X), . . . , Pn(X)), (1)

where f
[h]
j is the homogeneous version of the polynomial fj , i.e.

f
[h]
j (Y,X1, . . . , Xn) := Y d · fj(

X1

Y
, . . . ,

Xn

Y
) .

3. The verifier samples a random evaluation point r from a public subset
S ⊂ Fqµ of size N and sends it to the prover. The latter then reveals the
evaluations vi := Pi(r), together with a proof π that the evaluations are
consistent with the commitment.

4. The verifier checks that the revealed evaluations are consistent with the
commitment using π and checks that we have

Q(r) = v0 +

m∑
j=1

γj · f [h]j (r, v1, . . . , vn) . (2)

The above protocol assumes that the prover has a way to commit polynomials
and to provably open some evaluations later (while keeping hidden the other
evaluations).

Security Analysis. We can observe that the coefficient in front of the degree-d
monomial in the right term of Equation (1) is

m∑
j=1

γj · fj(w1, . . . , wn) , (3)

so the degree-(d− 1) polynomial Q is well-defined because this quantity is zero
when the witness w is valid. Let us assume that the prover is malicious, mean-
ing that he does not a valid witness. It implies that there exists j∗ such that
fj∗(w) ̸= 0. In that case, the probability that there exists some Q such that
Equation (1) holds is at most 1/qµ over the randomness of γ1, . . . , γm, because
the coefficient (3) is zero only with probability 1/qµ. If Equation (1) does not
hold, the probability that the check in Equation 2 passes is at most d/N , since
the degree-d polynomial relation

Q(X)−

P0 +

m∑
j=1

γj · f [h]j (X,P1(X), . . . , Pm(X))

 ̸= 0

would have at most d roots (and so the random challenge r should be among
those roots). So, the proof system is sound, with a soundness error of 1

qµ +(
1− 1

qµ

)
· dN . Moreover, assuming that the commitment scheme is hiding, we

can observe that the interactive proof is zero-knowledge since
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– revealing Q(X) leaks no information about the secret thanks to the random
polynomial P0, and

– revealing one evaluation of the polynomials P1, . . . , Pn leaks no information
about the leading term thanks to the randomness used to build those poly-
nomials.

In our setting of the RYDE signature scheme, Fqµ might be a small field,
so it would lead to a relatively bad soundness error. To solve this issue, we
just repeat Step 2 of the proof system ρ times in parallel: the verifier chooses a
random matrix Γ ∈ Fρ×m and then the prover reveals ρ polynomials Q1, . . . , Qρ
such that

Qk(X) = P0,k(X) +

m∑
j=1

Γ k,j · f [h]j (X,P1(X), . . . , Pn(X))

where P0,1, . . . , P0,ρ are ρ random degree-(d − 1) polynomials that have been
committed in the previous step. In that case, the soundness error is now 1

qµ·ρ +(
1− 1

qµ·ρ

)
· dN .

Remark 1. Using the above tweak, when taking ρ such that ρ ·µ · log2 q ≥ λ, the
soundness error is roughly d/N . When N is small (compared to 2λ), we would
need to repeat the zero-knowledge protocol several times to achieve the desired
security level. One solution could be that the verifier checks the polynomial
relation (1) into several points instead of a single one. If the verifier checks
the relation into ℓ points, the prover needs to sample P1, . . . , Pn as degree-
ℓ polynomials to preserve zero-knowledge, and the soundness error would be
1

qµ·ρ +
(
1− 1

qµ·ρ

)
· (

d·ℓ
ℓ )

(Nℓ )
. By taking ℓ such the soundness error is directly negligible,

we would not need to rely on parallel repetitions. However, the techniques we
would like to use to commit to polynomials are based on GGM trees and do
not scale well if we want to open several evaluations. We would need to use
techniques based on Merkle trees (e.g. TCitH-MT [FR23a]), but the signature
size would be larger than 6 KB (for the first security level).

In what follows, we describe how to commit polynomials such that we can
later open some evaluations.

The TCitH-GGM Approach. The TCitH framework [FR23a] shows that we can
commit n̄ random polynomials using seed trees thanks to ideas from [ISN89,CDI05].
Here is the commitment process for degree-1 polynomials:

1. One uses an all-but-one vector commitment (AVC) to sample and commit
N seeds seed1, . . . , seedN .

2. One expands each seedi as wrnd,i := PRG(seedi) ∈ Fn̄q for i ∈ {1, . . . , N},
where PRG is a pseudorandom generator.
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3. One computes

wacc ←
N∑
i=1

wrnd,i ∈ Fn̄q

wbase ← −
N∑
i=1

ϕ(i) · wrnd,i ∈ Fn̄qµ

where ϕ : {1, . . . , N} → Fqµ is a public one-to-one function.
4. One reveals the auxiliary value aux := w − wacc.
5. One defines Pj as

Pj(X) = wj ·X + (wbase)j

for all j.

This commitment procedure has the main advantage to enable the prover to
reveal one evaluation {Pj(ϕ(i∗))}j for i∗ ∈ [1 : N ] while keeping secret the
coefficient w and wbase: they just need to reveal all the {seedi}i except seedi∗ (by
opening the AVC scheme) and the verifier will be able to compute Pj(ϕ(i

∗)) as

ϕ(i∗) · auxj +
N∑

i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · (wrnd,i)j with wrnd,i := PRG(seedi).

Indeed, we have that

ϕ(i∗) · auxj+
N∑

i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · (wrnd,i)j

= ϕ(i∗) ·

(
auxj +

N∑
i=1

(wrnd,i)j

)
−

N∑
i=1

ϕ(i) · (wrnd,i)j

= ϕ(i∗) · (auxj + (wacc)j) + (wbase)j

= ϕ(i∗) · wj + (wbase)j = Pj(ϕ(i
∗))

Using this commitment procedure, the zero-knowledge protocol has 5 rounds,
and one needs to rely on protocol repetitions to achieve the desired security.
Indeed, the computational complexity is linear in N and so we can not take N
exponentially large. To have a λ-bit security we need to repeat the protocol τ
times in parallel, such that (d/N)

τ ≤ 2−λ, assuming that q−µ·ρ is negligible.

The VOLEitH Approach. As the TCitH framework, the VOLEitH approach

starts by committing τ sets of polynomials {P (1)
i }i, . . . , {P

(τ)
i }i in parallel. How-

ever, instead of considering those sets of polynomials individually as the TCitH
framework, the VOLEitH framework [BBD+23] consists in “merging them” into
polynomials for which we will be able to open Nτ evaluations. This merge in-
troduces an additional round in the proof system, leading to a 7-round proof
system with soundness error

1

2µ·ρ
+

(
1− 1

2µ·ρ

)
· d

Nτ
.
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3.2 Dual Support Modeling

As explained previously, the RYDE signature scheme is built from a zero-knowledge
proof of knowledge for a solution to an RSDs instance. We rely on the proof
system described in the previous section. This scheme enables us to prove the
knowledge of a witness satisfying some degree-d polynomial constraints, so we
should write the RSDs problem as a system of degree-d polynomial equations.

Instead of q-polynomials, RYDE uses the Dual Support Modeling from [BFG+24].
In this setting, the protocol aims at verifying that a vector x is solution of the
constraints {

xH⊤ = y,

wR
(
x
)
≤ r

for a given matrix H ∈ F(n−k)×n
qm and a given vector y ∈ Fn−kq . The modeling

consists in viewing x as a vector-matrix product, x = sC, with s ∈ Frqm and

C ∈ Fr×nq . Furthermore, the modeling specializes the matrix C as
[
Ir C

′] for
some matrix C′ ∈ Fr×(n−r)

q , and the vector s as (1 ∥ s′) for some vector s′ ∈
Fr−1
qm . Therefore, we use the proof system to prove that we know the witness

(s′,C′) which satisfy the following quadratic constraints (d = 2):

sCH⊤ = y with C =
[
Ir C

′] and s = (1 ∥ s′).

3.3 RYDE Protocol

Let us now express the proof system in the specific case of the RYDE scheme,
i.e. specialize the proof system described in Section 3.1 for the Rank Syndrome
Decoding modeling of Section 3.2:

1. The prover begins by sampling random degree-1 polynomials Ps′ = s′ ·X +
s′base and PC′ = C′ ·X +C′

base, where s′base and C′
base are randomly sampled

from Fr−1
qm and Fr×(n−r)

q respectively. He also samples a random degree-1
polynomial Pv = v ·X + vbase where v ∈ Fρqm and vbase ∈ Fρqm . He commits
to those polynomials.

2. The verifier chooses a random matrix Γ ∈ F(n−k)×ρ
qm and sends it to the

prover. The latter reveals the degree-1 polynomial Pα(X) defined as

Pα(X) = Pv(X) + Γ ·
(
H · Px(X)− y ·X2

)
∈ (Fqm [X])

ρ

with
Px(X) = (X ∥ Ps′(X)) · [PIr (X) ∥ PC′ ] ∈ (Fqm [X])

n
,

where PIr := Ir ·X ∈ (Fq[X])
r×r

.
3. The verifier samples a random evaluation point r from a public subset
S ⊂ Fqm of size N and sends it to the prover. The latter then reveals the
evaluations s′Eval := Ps′(r), C

′
Eval := PC′(r) and vEval := Pv(r), together

with a proof π that the evaluations are consistent with the commitment.
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4. The verifier checks that the revealed evaluations are consistent with the
commitment using π and check that we have

Pα(r) =? vEval + Γ ·
(
xEval ·H⊤ − y · r2

)
∈ Fρqm

with

xEval = (r ∥ s′Eval) · [r · Ir ∥ C′
Eval].

Committing to Witness Polynomials. In the above proof system, we need
to commit three polynomials:

– The witness polynomial Ps′ = s′ ·X + s′base encoding the secret s′;

– The witness polynomial PC′ = C′ ·X +C′
base encoding the secret C′;

– The masking polynomial Pv = v · X + vbase, which aims to avoid leakage
through Pα.

To commit them, we use the TCitH approach as explained in Section 3.1:

1. We use an all-but-one vector commitment (AVC) to sample and commit N
seeds seed1, . . . , seedN .

2. One expands each seedi as

(s′rnd,i,C
′
rnd,i,vrnd,i) := PRG(seedi) ∈ Fr−1

qm × Fr×(n−r)
q × Fρ×1

qm

for all i ∈ {1, . . . , N}.
3. One computes

(s′acc,C
′
acc,vacc)←

(
N∑
i=1

s′rnd,i,

N∑
i=1

C′
rnd,i,

N∑
i=1

vrnd,i

)

(s′base,C
′
base,vbase)←

(
−

N∑
i=1

ϕ(i) · s′rnd,i, −
N∑
i=1

ϕ(i) ·C′
rnd,i, −

N∑
i=1

ϕ(i) · vrnd,i

)

with (s′acc,C
′
acc,vacc) ∈ Fr−1

qm × Fr×(n−r)
q × Fρ×1

qm and (s′base,C
′
base,vbase) ∈

Fr−1
qm × Fr×(n−r)

qm × Fρ×1
qm .

4. One reveals the auxiliary value aux := (s′aux,C
′
aux) with s′aux := s′ − s′acc

and C′
aux = C′ − C′

acc). Since v is a random vector (which is not part of
the witness, it aims to mask the polynomial Pα), we do not need to rely on
auxiliary value, we just define v as vacc (it is equivalent to say that vaux := 0).

5. One defines Ps′ , PC′ and Pv respectively as s′ ·X + s′base, C
′ ·X +C′

base and
v ·X + vbase.

Then, to open the evaluations s′Eval := Ps′(ϕ(i
∗)), C′

Eval := PC′(ϕ(i∗)) and
vEval := Pv(ϕ(i

∗)), the prover just reveals all the seeds {seedi}i except seedi∗
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and the verifier will be able to compute s′Eval, C
′
Eval and vEval as

s′Eval = ϕ(i∗) · s′aux +
N∑

i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · s′rnd,i

C′
Eval = ϕ(i∗) ·C′

aux +

N∑
i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) ·C′
rnd,i

vEval =

N∑
i=1,i̸=i∗

(ϕ(i∗)− ϕ(i)) · vrnd,i

with (s′rnd,i,C
′
rnd,i,vrnd,i) := PRG(seedi).

One-Tree Optimization. Here above, we described how to commit the polyno-
mials Ps′ , PC′ and Pv such that the prover can later open one evaluation. In
practice, we perform this commitment phase τ times in parallel. It implies that
we use τ all-but-one vector commitments, where each of them uses of GGM tree
of N leaves. Therefore, we can optimize those all-but-one vector commitments
by using a so-called batched all-but-one vector commitment (BAVC) scheme,
which aims to be more efficient than τ independent AVC schemes. In RYDE, we
use the BAVC scheme described in the article [BBM+25], which proposes the
“one-tree” optimization. Instead of considering τ independent GGM trees of N
leaves in parallel, the authors propose to rely on a unique large GGM tree of
τ ·N leaves where the ith seed of the eth parallel repetition is associated to the
(e ·N + i)th leaf of the large GGM tree. As explained in [BBM+25], “opening all
but τ leaves of the big tree is more efficient than opening all but one leaf in each
of the τ smaller trees, because with high probability some of the active paths in
the tree will merge relatively close to the leaves, which reduces the number of
internal nodes that need to be revealed.” Moreover, the authors of [BBM+25]
further propose to improve the previous approach using the principle of grinding.
When the BAVC opening is such that the number of revealed nodes in the re-
vealed sibling paths exceeds a chosen threshold Topen, the opening is considered
as a failure (i.e. it returns ⊥), forcing the prover/signer recomputing another
opening challenge by hashing with an incremented counter. This process is done
until the number of revealed nodes is less than Topen. For example, if we consider
N = 256 and τ = 16, the number of revealed nodes is smaller than (or equal
to) Topen := 110 with probability ≈ 0.2. The selected value of Topen induces a
rejection probability prej = 1 − 1/θ, for some θ ∈ (0,∞), and the signer hence
needs to perform an average of θ hash computations for the opening challenge
(instead of 1). While this strategy decreases the challenge space by a factor θ, it
does not change the average number of hashes that must be computed to succeed
an forgery attack against the signature scheme (since the latter is multiplied by
θ). As noticed by the authors of [BBM+25], this strategy can be thought of as
loosing log2 θ bit of security (because of a smaller challenge space) which are re-
gained thanks to a proof-of-work (performing an average of θ hash computations
before getting a valid challenge).
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PIOP Computation. We now describe in more details the computation per-
formed over the committed polynomials, namely the computation of Pα for the
prover and the computation of Pα(r) for the verifier.

Prover’s Computation. We detail here after the computation of the prover to
build the polynomial Px and the polynomial Pα(X). Let us denote Px := x ·
X2 + xmid · X + xbase and Pα := α · X2 + αmid · X + αbase. We also denote
s = (1 ∥ s′) and sbase = (1 ∥ s′base). The prover should compute Px(X) :=
(X ∥ Ps′(X)) · [PIr (X) ∥ PC′(X)], meaning that he should compute

x := [s ∥ s ·C′]

xmid := [sbase ∥ sbase ·C′ + s ·C′
base]

xbase := [01×r ∥ sbase ·C′
base].

Then, the prover should compute the polynomial

Pα(X) := Pv(X) + Γ ·
(
Px(X) · (In−k ∥H ′)⊤ − y ·X2

)
,

meaning that he should compute

α := Γ ·
(
x · (Im·n−k ∥H ′)⊤ − y

)
αmid := Γ · xmid · (Im·n−k ∥H ′)⊤ + v

αbase := Γ · xbase · (Im·n−k ∥H ′)⊤ + vbase.

Let us remark that, by design, α is always zero so the prover does not need to
compute it (by design, the polynomial Pα is of degree at most 1). Therefore, the
prover does not need to compute x: he just need to compute xmid and xbase to
build Pα(X) := αmid ·X +αbase.

Verifier’s Computation. We detail here after the computation of the verifier to
build the evaluations xEval := Px(r) and αEval := Pα(r). The verifier should
compute

xEval := Px(r)

= [Ps(r)PIr (r) ∥ Ps(r)PC′(r)]

= [sEval · r ∥ sEval ·C ′
Eval] ,

together with

αEval := Pα(r)

= Pv(r) + Γ ·
(
(Im·n−k ∥H ′) · Px(r)− y · r2

)
= vEval + Γ ·

(
(Im·n−k ∥H ′) · xEval − y · r2

)
where Ps = (X ∥ Ps′) and sEval = (r ∥ s′Eval).
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Fiat-Shamir Transformation & Grinding. To obtain the RYDE signa-
ture scheme from the RYDE protocol, we rely on the Fiat-Shamir transforma-
tion [FS87] to remove the prover-verifier interactions. Each verifier’s challenge
is computed as the output of an extendable-output function (XOF) which takes
as input the data that the prover would send before receiving that challenge in
an interactive protocol. The RYDE protocol is a 5-round proof system, so there
are two challenges: the randomness Γ involved in the definition of Pα, and the
evaluation points onto which all the polynomials are evaluated. Since the sig-
nature scheme is the non-interactive variant of a 5-round protocol repeated τ
times in parallel, the scheme is affected by the attack of Kales and Zaverucha
[KZ20]. To avoid incrementing the number τ of parallel protocol repetitions (to
have a secure scheme), we draw the first challenge from an exponentially-large
set. Therefore, this challenge might be the same across all the parallel repeti-
tions. Using this strategy, to have a secure scheme, q−m·ρ and (2/N)τ should
be negligible. In the RYDE scheme, we also use a (explicit) proof-of-work to the
Fiat-Shamir hash computation of the last challenge, as proposed in [BBM+25].
Together with the opening challenge, the signer samples a w-bit value vgrinding
and keeps the opening challenge only if this additional value is zero, with w a
parameter of the scheme. If this additional value is not zero, then the signer
increments a counter and recompute an other opening challenge with an other
w-bit value, and he repeats the process until the grinding value is zero. Let us
remark that we can use the same counter for this grinding process and the grind-
ing process due to the fact that the [BBM+25]’s BAVC scheme might return ⊥
when the number of revealed nodes is larger than the chosen threshold Topen.
This strategy increases the cost of hashing the last challenge by a factor 2w and
hence increases the security of w bits. This thus allows to take smaller parame-
ters (N, τ) for the large tree, namely parameters achieving λ−w bits of security
instead of λ. More precisely, the parameters N , τ and w will be chosen such that
(2/N)τ · 2−w ≤ 2−λ to achieve a λ-bit security.

We describe the resulting signature scheme in Algorithms 1 and 2. We added
a random salt to have a domain separation between signatures. Let us remark
that RYDE uses standard techniques to optimize the signature size: instead of
including all the prover’s sent data, the signature only contains minimal infor-
mation that enables the verifier to recompute the prover’s sent data and will
check if the Fiat-Shamir hashes are consistent with the recomputed data. More
precisely,

– Instead of including the evaluations s′Eval, C
′
Eval and vEval, the signature in-

cludes information (data enabling to derive {seedi}i ̸=i∗ and the auxiliary
value (s′aux,C

′
aux)) that enables the verifier to derive them.

– Instead of including the polynomial Pα := αmid · X + αbase, the signature
only contains αmid. Then, using αEval := Pα(ϕ(i

∗)) and αmid, the verifier will
be able to recompute αbase.
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Public key: A Rank Syndrome Decoding instance (H,y).

Secret key: A vector s′ ∈ Fr−1
qm and C′ ∈ Fr×r(n−r)

q satisfying (1 ∥ s′) · [Ir ∥ C′]) = y.

Step 0: Initialization

1. Uncompress the public and secret keys (if they are in a compressed form).

2. Sample a random salt
$←− {0, 1}2λ.

Step 1: Build & commit to witness polynomials

3. Using a (salted) BAVC, derive τ sets of N seeds {seed(e)1 , . . . , seed
(e)
N }e with their commitment

digests come,i.

4. For each iteration e ∈ [1, . . . , τ ]:

(a) For all i ∈ [1, . . . , N ], expand each seed seed
(e)
i as (s′(e)

rnd,i,C
′(e)
rnd,i,v

(e)
rnd,i).

(b) Compute s′(e)
acc =

∑N
i=1 s

′(e)
rnd,i, C

′(e)
acc =

∑N
i=1 C

′(e)
rnd,i, and v

(e)
acc =

∑N
i=1 v

(e)
rnd,i.

(c) Compute s′(e)
base = −

∑N
i=1 ϕ(i)·s

′(e)
rnd,i, andC′(e)

base = −
∑N

i=1 ϕ(i)·C
′(e)
rnd,i, and v

(e)
base = −

∑N
i=1 ϕ(i)·

v
(e)
rnd,i.

(d) Compute s′(e)
aux = s′ − s′(e)

acc and C′(e)
aux = C′ −C′(e)

acc , and set v(e) as v
(e)
acc .

5. Compute h1 = Hash1(salt, {come,i}e∈[1,...,τ ],i∈[1,...,N ], (s
′(e)
aux,C

′(e)
aux )e∈[1,...,τ ])

Step 2: Compute the polynomial proof Pα(X)

6. Sample Γ
$←− PRG(hsh) where Γ ∈ F(n−k)×ρ

qm .

7. For each iteration e ∈ [1, . . . , τ ]:

(a) Compute P
(e)
x (X) by computing

x
(e)
mid := [s

(e)
base ∥ s

(e)
base ·C

′(e) + s(e) ·C′(e)
base ],

x
(e)
base := [0m×r ∥ s(e)

base ·C
′(e)
base ].

where s
(e)
base = (1 ∥ s′(e)

base).

(b) Compute the polynomial P
(e)
α := α

(e)
mid ·X +α

(e)
base by computing

α
(e)
mid := x

(e)
mid · (Im·n−k ∥H ′)⊤ · Γ + v(e),

α
(e)
base := x

(e)
base · (Im·n−k ∥H ′)⊤ · Γ + v

(e)
base.

8. Compute h2 = Hash2
(
Hash0(msg), pk, salt, h1, (α

(e)
mid,α

(e)
base)e∈[1,...,τ ]

)
.

Step 3: Open random evaluations

9. Set ctr := 0.

10. Sample
(
vgrinding, {i∗(e)}e

)
$←− PRG(h2, ctr) where i∗(e) ∈ [1, . . . , N ] for all e ∈ [1, . . . , τ ] and

vgrinding ∈ {0, 1}w.
11. Compute the BAVC’s opening proof πBAVC for {seedei}e,i ̸=i∗(e) .

12. If vgrinding ̸= 0 or πBAVC = ⊥, increment ctr and go to Step 10.

13. Output the signature σ =

(
salt | ctr | h2 | πBAVC |

(
s′(e)

aux,C
′(e)
aux,α

(e)
mid

)
e∈[1,...,τ ]

)
.

Fig. 1. High level description of RYDE Sign algorithm
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Public key: A Rank Syndrome Decoding instance (H,y).

Step 0: Initialization

1. Uncompress the public key (if it is in a compressed form).

2. Parse the signature as

(
salt | ctr | h2 | πBAVC |

(
s′(e)

aux,C
′(e)
aux,α

(e)
mid

)
e∈[1,...,τ ]

)
.

Step 1: Computing opened evaluations

3. Sample
(
vgrinding, {i∗(e)}e

)
$←− PRG(hpiop, ctr) where i∗(e) ∈ [1, . . . , N ] for all e ∈ [1, . . . , τ ] and

v ∈ {0, 1}w.
4. Using πBAVC and {i∗(e)}e, recover {seedei}e,i ̸=i∗(e) with the reconstruction algorithm of the BAVC

scheme, together with the commitment digests {come,i}e∈[1,...,τ ],i∈[1,...,N ].

5. For each iteration e ∈ [1, . . . , τ ]:

(a) For all i ∈ [1, . . . , N ]\{i∗(e)}, expand each seed seed
(e)
i as (s′(e)

rnd,i,C
′(e)
rnd,i,v

(e)
rnd,i).

(b) Compute

s′(e)
Eval = ϕ(i∗

(e)
) · s′(e)

aux +

N∑
i=1,i ̸=i∗(e)

(ϕ(i∗
(e)

)− ϕ(i)) · s′(e)
rnd,i

C
′(e)
Eval = ϕ(i∗

(e)
) ·C′(e)

aux +

N∑
i=1,i ̸=i∗(e)

(ϕ(i∗
(e)

)− ϕ(i)) ·C′(e)
rnd,i

v
(e)
Eval =

N∑
i=1,i ̸=i∗(e)

(ϕ(i∗
(e)

)− ϕ(i)) · v(e)
rnd,i .

6. Compute h1 = Hash1(salt, {come,i}e∈[1,...,τ ],i∈[1,...,N ], (s
′(e)
aux,C

′(e)
aux )e∈[1,...,τ ])

Step 2: Recompute the polynomial proof Pα(X)

7. Sample Γ
$←− PRG(hsh) where Γ ∈ F(n−k)×ρ

qm .

8. For each iteration e ∈ [1, . . . , τ ]:

(a) Compute the evaluation x
(e)
Eval := P

(e)
x (ϕ(i∗(e))) as

x
(e)
Eval = [s

(e)
Eval · ϕ(i

∗(e)) ∥ s(e)
Eval ·C

′(e)
Eval ].

where s
(e)
Eval =

(
ϕ(i∗(e)) ∥ s′(e)

Eval

)
.

(b) Compute the evaluation α
(e)
Eval := P

(e)
α (ϕ(i∗(e))) as

α
(e)
Eval = vEval +

(
x

(e)
Eval · (Im·n−k ∥H ′)⊤ − y · ϕ(i∗(e))2

)
· Γ .

(c) Deduce α
(e)
base as

α
(e)
base = α

(e)
Eval −α

(e)
mid · ϕ(i

∗(e)).

9. Compute h′
2 = Hash2

(
Hash0(msg), pk, salt, h1, (α

(e)
mid,α

(e)
base)e∈[1,...,τ ]

)
.

Step 3: Verification

10. Check that h′
2 =? h2 and vgrinding = 0.

Fig. 2. High level description of RYDE Verify algorithm
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4 Algorithmic Description

4.1 Notations

We let y ← A(x) denote the operation that runs algorithm A on input x and as-
signs the output to the variable y. The notation a += b means that to the variable
a it is assigned the value a+ b, where the addition is performed component-wise
if a and b are tuples. We employ arrays, and we let a[i] denote the ith element
of the array a. The main variable names employed in the algorithms are collected
in Table 2.

Seeds:

seedpk {0, 1}λ Seed for the generation of the matrix H of the public key.

seedsk {0, 1}λ Seed for the generation of the matrices s′,C of the secret key.

rseed {0, 1}λ Root seed for the seed tree.

seeds ({0, 1}λ)N Leaf seeds for the seed tree.

salt {0, 1}2λ Salt.

salti {0, 1}λ The i-th half of the salt.

tree ({0, 1}λ)2N Nodes of the seed tree.

path ({0, 1}λ)∗ Part of the seed tree revealed to the verifier.

Vectors and Matrices:

H F(n−k)×k
qm Matrix of the public key.

x Fn
qm Secret error.

y Fn−k
qm Public syndrome vector.

s′ Fr−1
qm Secret support.

C Fr×(n−r)
q Secret coordinates matrix.

v Fρ
qm Masking vector.

Γ F(n−k)×ρ
qm Challenge matrix.

α Fρ
qm Response vector to challenge Γ

Polynomial coefficients and evaluations:

point Fqm Evaluation scalar.

baseu
Degree-0 coefficient of the polynomial representing the vector u
(in its leading term).

midu Degree-1 coefficient of the polynomial representing u.
shareu Evaluation at point of the polynomial representing u.
accu Intermediary variable to compute auxu

auxu
Correcting term between the sum of expanded seeds for u and its
actual secret value.

Others:

msg {0, 1}∗ The message the be signed.

Table 2. Algorithmic notation.
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4.2 Finite Fields Representation

Every element in Fqm is represented by a degree-(m−1) polynomial am−1x
m−1+

· · ·+ a1x+ a0, where a0, . . . , am−1 ∈ Fq. We store an element am−1x
m−1+ · · ·+

a1x+ a0 ∈ Fqm as the integer with binary representation

bin(am−1) ∥ bin(am−2) ∥ · · · ∥ bin(a1) ∥ bin(a0),

where bin(ai) is the binary representation of ai ∈ Fq. We use (m log q) bits
to store a single Fqm-element. The multiplication of two elements in Fqm is
implemented as a polynomial multiplication modulo an irreducible polynomial
f(x), where f(x) is chosen as given in Table 3.

q m f(x)

2 53 x53 + x6 + x2 + x+ 1
2 61 x61 + x5 + x2 + x+ 1
2 67 x67 + x5 + x2 + x+ 1

Table 3. Polynomial modulus f(x) for multiplications in Fqm .

4.3 Randomness Generation and Sampling

In the following, we describe the routines used for generating pseudorandom
objects.

ExpandSecret(seed) ▷ Fr−1
qm × Fr×(n−r)

q : From a seed, generates a secret key pair
(s′,C), where s′ is a vector such that the support s = (1 ∥ s′) ∈ Frqm verifies
rank(s) = r ; andC a coordinate matrix sampled uniformly. For the security level
parameter λ = 128, we use SHAKE128 with input seed. While for λ ∈ {192, 256},
we use SHAKE256.

ExpandMatrixH(seed) ▷ F(n−k)×k
qm : From a seed, samples a public matrix H

uniformly. For the security level parameter λ = 128, we use SHAKE128 with
input seed. While for λ ∈ {192, 256}, we use SHAKE256.

ExpandSeed(seed, salt, i) ▷ {0, 1}λ × {0, 1}λ: This routine is used in the GGM
tree expansion. It generates the two children of a parent node[i] = seed using
salt = (salt0 || salt1) and i as additional randomness. More precisely,

node[2i] =

{
AES-128(k = seed,msg = salt0 ⊕ (dom || i || 0x00)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (dom || i || 0x00)) otherwise.

node[2i+ 1] =

{
AES-128(k = seed,msg = salt0 ⊕ (dom || i || 0x01)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (dom || i || 0x01)) otherwise.



21

For the security level parameter λ = 192, we truncate the output of Rijndael-256
to 192 bits. In all the three cases, we take dom = 0x04, and we represent i ∈
{0, 1}32 as byte string of length eight.

ExpandShare(seed, salt) ▷ Fr−1
qm × Fr×(n−r)

q × Fρqm : From a seed, samples a triple
(s′,C,v) uniformly, using a salt = (salt0 || salt1) as extra randomness. We use
AES-128 (resp. Rijndael-256) in CTR mode. For the security level parameter
λ = 192, we truncate the output of Rijndael-256 to 192 bits. In all the three
cases, the counter ctr goes from 0 to block length− 1, where

block length =

⌈
bytes(s′) + bytes(C) + bytes(v)

λ

⌉
.

We sample (block length ·λ) bits as blocks = (block[0] || · · · || block[block length−
1]) with

block[ctr] =

{
AES-128(k = seed,msg = salt0 ⊕ ctr) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ ctr) otherwise.

We truncate the bits of blocks to get the exact amount of bytes representing s′,
C, and v.

ExpandChallenge1(seed) ▷ F(n−k)×ρ
qm : From a seed, samples a challenge Γ uni-

formly. For the security level parameter λ = 128, we use SHAKE128 with input
seed. While for λ ∈ {192, 256}, we use SHAKE256.

ExpandChallenge2(seed) ▷ [1, N1]
τ1 × [1, N2]

τ2 ×{0, 1}w: From a seed, samples an
array of revealed indexes i∗ and the grinding variable vgrinding uniformly. For
the security level parameter λ = 128, we use SHAKE128 with input seed. While
for λ ∈ {192, 256}, we use SHAKE256.

4.4 Hash Functions and Commitments

We instantiate our hash functions with SHA3-λ as follows:

Hash0(data) := SHA3-λ(0x00, data),

Hash1(data) := SHA3-λ(0x01, data), and

Hash2(data) := SHA3-λ(0x02, data).

For the commitments, we have the following two possible flavors.

Rijndael-based commitment: Let j = (N + i) and salt = (salt0 || salt1), then we
calculate Commit(salt, i, seed) := (high || low) where

high =

{
AES-128(k = seed,msg = salt0 ⊕ (dom || j || 0x00)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (dom || j || 0x00)) otherwise.

low =

{
AES-128(k = seed,msg = salt0 ⊕ (dom || j || 0x01)) if λ = 128

Rijndael-256(k = seed,msg = salt0 ⊕ (dom || j || 0x01)) otherwise.



22

For the security level parameter λ = 192, we truncate the output of Rijndael-256
to 192 bits. In all the three cases, we take dom = 0x03, and we represent
j ∈ {0, 1}32 as byte string of length eight.

SHA3-based commitment:

Commit(salt, i, seed) := SHA3-λ(0x03, salt, i, seed).

Compression of the commitments: We additionally employ the following two
hash functions, which we use to compress (and combine) the commitments stored
as a bi-dimensional array com = {com[e][i]}e<τ,i<Ne .

Hash13(com, i) := SHA3-λ(0x13, com[ ∗ ][j ∈| j ≡ i mod 4]), and

Hash(com) := SHA3-λ(Hash13(com, i) | i ∈ [1 : 4]).

4.5 Tree Routines

The seeds have a tree structure, where seeds = {seeds[e][i]}e<τ,i<Ne
is a set

of N =
∑τ
e=1Ne elements in {0, 1}λ. The Ne’s are positive integers such that

N1 = · · · = Nτ1 ≥ Nτ1+1 = · · · = Nτ for some integer τ1 > 0. In addition, it uses
the function ψ defined as

ψ(e, i) :=

{
(i− 1) · τ + (e− 1) + 1 if i ≤ Nτ
Nτ · τ + (i−Nτ − 1) · τ1 + (e− 1) + 1 otherwise.

(4)

Algorithm 1 Routine Tree.PRG.

Tree.PRG(salt, rseed)

1 : tree[0]← rseed

2 : for i from 0 to (N − 1) do

3 : (tree[2i+ 1], tree[2i+ 2])← ExpandSeed(salt, tree[i], i)

4 : return tree
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Algorithm 2 Routine Tree.GetSiblingPath.

Tree.GetSiblingPath(tree, {i∗[e]}e)

1 : hidden← {N + ψ(e, i∗[e]) : e ∈ {0, . . . , τ − 1}}
2 : revealed← {N, . . . , 2N − 1}\hidden
3 : for i from (N − 1) downto 1 do

4 : if (2i) ∈ revealed and (2i+ 1) ∈ revealed then

5 : revealed← (revealed\{2i, 2i+ 1}) ∪ {i}
6 : path← ∅
7 : for i from 1 to 2N − 1 do

8 : if i ∈ revealed then

9 : path← (path ∥ tree[i])
10 : return path

Algorithm 3 Routine Tree.GetSeedsFromPath.

Tree.GetSeedsFromPath({i∗[e]}e, pdecom, salt)

1 : hidden← {N + ψ(e, i∗[e]) : e ∈ {0, . . . , τ − 1}}
2 : revealed← {N, . . . , 2N − 1}\hidden
3 : for i from (N − 1) downto 1 do

4 : if (2i) ∈ revealed and (2i+ 1) ∈ revealed then

5 : revealed← (revealed\{2i, 2i+ 1}) ∪ {i}
6 : tree[1], . . . , tree[2N − 1]← ∅, . . . , ∅
7 : for i from 1 to (N − 1) do

8 : if i ∈ revealed then

9 : (tree[i], path)← path

10 : if tree[i] ̸= ∅ then
11 : (tree[2i+ 1], tree[2i+ 2])← ExpandSeed(salt, tree[i], i)

12 : for e from 0 to (τ − 1) do

13 : for i from 0 to (Ne − 1) do

14 : if i ̸= i∗[e] then

15 : seeds[e][i]← tree[N + ψ(e, i)] ▷ ψ(·, ·) defined in Equation (4)

16 : else

17 : seeds[e][i]← ∅
18 : return {seeds[e][i]}e,i
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4.6 Polynomial Computation Routines

In the polynomial computations, we split the matrix C ∈ Fr×(n−r)
q into C1 ∈

F1×(n−r)
q and C′ ∈ F(r−1)×(n−r)

q such that C =

(
C1

C′

)
. The same split is applied

to the corresponding polynomial evaluations baseC and shareC .

Algorithm 4 Routine ComputePolynomialProof.

ComputePolynomialProof(base,v, s′,C,Γ ,H)

1 : (bases′ , baseC , basev)← base

2 : (baseLx ∥ baseRx )← bases′ · baseC′ ▷ (baseLx ∥ baseRx ) ∈ Fn−r−k
qm × Fk

qm

3 : baseα ← [(0r ∥ baseLx ) + baseRx ·HT ] · Γ + basev ▷ baseα ∈ Fρ
qm

4 : (midLx ∥ midRx )←
(
bases′ ∥ baseC1 + s′baseC′ + bases′C

′)
5 : ▷ (midLx ∥ midRx ) ∈ Fn−1−k

qm × Fk
qm

6 : midα ← [(0 ∥ midLx ) +midRx ·HT ] · Γ + v ▷ midα ∈ Fρ
qm

7 : return (midα, baseα)

Algorithm 5 Routine RecomputePolynomialProof.

RecomputePolynomialProof(point, share,Γ ,H,y,midα)

1 : (shares′ , shareC , sharev)← share

2 : tmpx ← shareC1 · point+ shares′ · shareC′

3 : (shareLx ∥ shareRx )← (shares′ · point ∥ tmpx) ▷ sharex ∈ Fn−1−k
qm × Fk

qm

4 : shareα ← [(point2 ∥ shareLx ) + shareRx ·HT − y · point2] · Γ + sharev

5 : baseα ← shareα −midα · point
6 : return baseα
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4.7 Key generation

Algorithm 6 RYDE.KeyGen

KeyGen(λ)

1 : seedsk ← {0, 1}λ

2 : seedpk ← {0, 1}λ

3 : s′, C ← ExpandSecret(seedsk) ▷ s
′ ∈ Fr−1

qm , C ∈ Fr×(n−r)
q

4 : H ← ExpandMatrixH(seedpk) ▷ H ∈ F(n−k)×k
qm

5 : y ← (In−k ∥ H) · (1 ∥ s′) · (Ir ∥ C) ▷ y ∈ Fn−k
qm

6 : pk ← (seedpk, y)

7 : sk ← (seedsk, seedpk)

8 : return (pk, sk)
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4.8 Sign

Algorithm 7 RYDE.Sign

Sign(sk,msg)

1 : // Step 0: Initialization

2 : s′, C ← ExpandSecret(seedsk), H ← ExpandMatrixH(seedpk)

3 : y ← (In−k ∥ H) · (1 ∥ s′) · (Ir ∥ C), pk ← (seedpk, y)

4 : salt← {0, 1}2λ, rseed← {0, 1}λ

5 : // Step 1: Build and commit to witness polynomials

6 : tree← Tree.PRG(salt, rseed)

7 : for e ∈ [1 : τ ]

8 : acc[e]← (0, 0, 0), base[e]← (0, 0, 0)

9 : for i ∈ [1 : Ne]

10 : seeds[e][i]← seeds[N − 1 + ψ(e, i)]

11 : com[e][i]← Commit(salt, e, i, seeds[e][i])

12 : s′, C, v ← ExpandShare(seeds[e][i], salt)

13 : acc[e]← acc[e]+ (s′, C, v)

14 : base[e]← base[e]+ (ϕ(i) · s′, ϕ(i) · C, ϕ(i) · v)
15 : (accs′ , accC , accv)← acc[e]

16 : (auxs′[e], auxC[e], v[e])← (s′ − accs′ , C − accC , accv)

17 : h1 ← Hash1(salt,Hash(com), {auxs′[e], auxC[e]}e∈[1:τ ])

18 : // Step 2: Compute the polynomial proof Pα(X)

19 : Γ ← ExpandChallenge1(h1)

20 : for e ∈ [1 : τ ]

21 : (midα[e], baseα[e])← ComputePolynomialProof(base[e],v[e], s′,C,Γ ,H)

22 : // Step 3: Open random evaluations

23 : ctr← 0

24 : h2 ← Hash2(Hash0(msg), pk, salt, h1, {baseα[e],midα[e]}e∈[1:τ ])

25 : retry:

26 : {i∗[e]}e∈[1:τ ], vgrinding ← ExpandChallenge2(h2, ctr)

27 : path← Tree.GetSiblingPath(tree, {ψ(e, i∗[e])}e∈[1:τ ])

28 : if path has at least Topen + 1 nodes or vgrinding ∈ {0, 1}w is different from zero

29 : ctr← ctr+ 1

30 : goto retry

31 : σ ←
(
salt ∥ ctr ∥ h2 ∥ path ∥ {auxs′[e], auxC[e],midα[e], com[e][i∗[e]]}e∈[1:τ ]

)
32 : return σ
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4.9 Verify

Algorithm 8 RYDE.Verify

Verify(pk, σ,msg)

1 : // Step 0: Initialization

2 :
(
salt ∥ ctr ∥ h2 ∥ path ∥ {auxs[e], auxC[e],midα[e], com

∗
[e]}e∈[1:τ ]

)
← σ

3 : H ← ExpandMatrixH(seedpk)

4 : {i∗[e]}e∈[1:τ ], vgrinding ← ExpandChallenge2(h2, ctr)

5 : // Step 1: Computing opened evaluations

6 : seeds← Tree.GetSeedsFromPath({ψ(e, i∗[e])}e∈[1:τ ], path, salt)

7 : for e ∈ [1 : τ ]

8 : share[e]← (0, 0, 0)

9 : for i ∈ [1 : Ne]

10 : if i = i∗[e]

11 : com[e][i]← com∗
[e]

12 : else

13 : com[e][i]← Commit(salt, e, i, seeds[e][i])

14 : s′, C, v ← ExpandShare(seeds[e][i], salt)

15 : scalar← ϕ(i∗[e])− ϕ(i)

16 : share[e]← share[e]+ (scalar · s′, scalar · C, scalar · v)

17 : share[e]← share[e]+ (ϕ(i∗[e]) · auxs′[e], ϕ(i∗[e]) · auxC[e], 0)

18 : h1 ← Hash1(salt,Hash(com), {auxs′[e], auxC[e]}e∈[1:τ ])

19 : // Step 2: Recompute the polynomial proof Pα(X)

20 : Γ ← ExpandChallenge1(h1)

21 : for e ∈ [1 : τ ]

22 : point← ϕ(i∗[e])

23 : baseα[e]← RecomputePolynomialProof(point, share[e],Γ ,H,y,midα[e])

24 : // Step 3: Verification

25 : h′
2 ← Hash2(Hash0(msg), pk, salt, h1, {baseα[e],midα[e]}e∈[1:τ ])

26 : return (h2
?
= h′

2) and (vgrinding
?
= 0w)
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5 Parameter Sets

We provide several parameter sets using the nomenclature RYDE-X-y where
X ∈ {1, 3, 5} denotes the security level and y ∈ {short, fast} refers to size / per-
formance trade-off considered for the parameter set.

5.1 RSD parameters

RSD parameters used in RYDE are given in Tables 4. The security of RYDE
against the attacks on the Rank Syndrome Decoding problem are estimated by
using the CryptographicEstimators V2.0.0 2 [EVZB24], which considers all the
classical attacks described in Section 8. In our estimations, we take ω, the linear
algebra constant, to be 2.

Instance q m n k r

RYDE-1 2 53 53 45 4
RYDE-3 2 61 61 51 5
RYDE-5 2 61 57 44 7

Table 4. RSD parameters used in RYDE

5.2 Protocol parameters

The protocol related parameters used in RYDE are given in Table 5.

Instance ρ τ N Topen w

RYDE-1-Short 3 12 211 118 8
RYDE-1-Fast 3 17 28 118 9
RYDE-1-Faster 3 30 25 126 8

RYDE-3-Short 4 19 211 176 2
RYDE-3-Fast 4 27 28 178 3
RYDE-3-Faster 4 47 25 200 4

RYDE-5-Short 5 25 211 240 6
RYDE-5-Fast 5 36 28 242 4
RYDE-5-Faster 5 63 25 270 4

Table 5. MPC parameters used in RYDE

2 Code available at https://github.com/Crypto-TII/CryptographicEstimators.

https://github.com/Crypto-TII/CryptographicEstimators
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5.3 Key and Signature sizes

Table 6 presents the public key, secret key, and signature sizes of RYDE. The
public key pk has (λ+m(n− k) · log2 q) bits, while the secret key sk has λ bits.

The bit-length of a RYDE signature σ is given by

| σ | = 2λ︸︷︷︸
salt

+ 64︸︷︷︸
ctr

+ 2λ︸︷︷︸
h2

+λ · Topen︸ ︷︷ ︸
path

+τ · ( 2λ︸︷︷︸
comi∗

+(r − 1 + ρ) · log2 q︸ ︷︷ ︸
(auxs′ ,midα)

+ r · (n− r)︸ ︷︷ ︸
auxC

).

Instance sk pk σ

RYDE-1-Short 32 B 69 B 3 115 B
RYDE-1-Fast 32 B 69 B 3 597 B
RYDE-1-Faster 32 B 69 B 4 976 B

RYDE-3-Short 48 B 101 B 7 064 B
RYDE-3-Fast 48 B 101 B 8 264 B
RYDE-3-Faster 48 B 101 B 11 672 B

RYDE-5-Short 64 B 132 B 12 607 B
RYDE-5-Fast 64 B 132 B 14 779 B
RYDE-5-Faster 64 B 132 B 20 850 B

Table 6. Keys and signature sizes of RYDE.
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6 Implementation and Performance Analysis

This section provides performance measurements for RYDE.

Benchmark platform. The benchmarks were performed on a machine running
Ubuntu Server 22.04.5 LTS, equipped with an Intel 13th-generation Intel (R)
Core(TM) i9-13900K CPU running at 3000MHz and 64GB of RAM. All the ex-
periments were performed with Hyper-Threading, Turbo Boost, and SpeedStep
features disabled. The scheme has been compiled with GCC compiler (version
11.4.0) and uses the XKCP library. The results of each parameter set were ob-
tained by computing the mean from 25 random instances. To minimize biases
from background tasks running on the benchmark platform, each instance has
been repeated 25 times and averaged.

Remark on the instantiation of RYDE. The performance profile of RYDE
(and more generally any MPCitH based schemes) is highly dependent on the per-
formances of the underlying symmetric primitives. PRG are instantiated using
either AES/Rijndael or SHAKE while hash functions are instantiated using SHA3.
Hereafter, we provide benchmarks with two different instantiations for commit-
ment schemes namely one based on AES/Rijndael and one based on SHA3.

Reference Implementation. The purpose of our reference implementation is
to help understand the scheme. As such, this implementation is not represen-
tative of the performance that RYDE can achieve and does not provide any
guarantee with respect to timing attacks.

Optimized Implementation. The performance of our optimized implemen-
tations on the aforementioned platform are described in Tables 7 and 8. This
optimized implementation has been written in a constant time way whenever rel-
evant thus its execution is expected to not leak any sensitive data. Additionally,
Valgrind (version 3.18.1) and LibVEX were used to check that the implemen-
tation did not have memory leaks. The following optimization flags have been
used during compilation:

• C code: -O3 -flto -mpclmul -msse2 -mavx -mavx2 -maes.
• ASM code (required in the XKCP library): -x assembler-with-cpp -Wa,

-defsym,old gas syntax=1 -Wa,-defsym,no plt=1.

Known Answer Test Values. KAT values have been generated using the
script provided by the NIST and can be retrieved in the KATs/ folder. Both
reference and optimized implementations generate the same KATs. In addition,
examples with intermediate values have also been provided in these folders. The
intermediate values correspond with one execution calling the NIST-provided
randombytes function seeded with zero. One can generate the test files as men-
tioned above using the kat and verbose modes of the implementation, respec-
tively. The procedure is detailed in the technical documentation (README file).
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Instance KeyGen Sign Verify

RYDE-1-Short 34 K 18 M 15 M
RYDE-1-Fast 34 K 7.0 M 2.8 M
RYDE-1-Faster 34 K 1.7 M 0.9 M

RYDE-3-Short 64 K 106 M 94 M
RYDE-3-Fast 61 K 21 M 17 M
RYDE-3-Faster 61 K 4.8 M 4.3 M

RYDE-5-Short 67 K 141 M 131 M
RYDE-5-Fast 67 K 29 M 24 M
RYDE-5-Faster 67 K 7.3 M 6.6 M

Table 7. Performances of RYDE optimized implementation in Thousand (K) and Mil-
lion (M) of CPU cycles using Rijndael-based commitment schemes.

Instance KeyGen Sign Verify

RYDE-1-Short 34 K 32 M 29 M
RYDE-1-Fast 34 K 9.3 M 5.2 M
RYDE-1-Faster 34 K 2.2 M 1.4 M

RYDE-3-Short 61 K 115 M 104 M
RYDE-3-Fast 62 K 23 M 19 M
RYDE-3-Faster 61 K 5.2 M 4.7 M

RYDE-5-Short 67 K 176 M 166 M
RYDE-5-Fast 67 K 35 M 30 M
RYDE-5-Faster 67 K 8.8 M 8.1 M

Table 8. Performances of RYDE optimized implementation in Thousand (K) and Mil-
lion (M) of CPU cycles using SHA3-based commitment schemes.
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7 Security Analysis

In this section, we provide a security proof for the RYDE scheme. One should
note that this proof relies on generic PRGs, Hash functions and commitment
schemes and as such does not encompass the specific choices made in order to
instantiate these primitives while implementing the scheme.

Theorem 1. Let the PRG used be (t, ϵPRG)-secure, and ϵRSD the advantage
an adversary has over the specialized Rank Syndrome Decoding problem (RSDs).
Consider Hash0,Hash1,Hash2,Hash3 behave as random oracles, with an output
of 2λ bits. Then, if an adversary makes qi queries to Hashi and qS queries to
the signing oracle, the probability for him to produce a forgery for the RYDE
signature scheme is given by:

Pr[Forge] ≤4 · (q′ + τ ·N · qS)2

2 · 22λ
+
qS · (qS + 4q′)

22λ

+ qS · τ · ϵPRG + q′ · 2−w ·
(

2

N

)τ
+ q′ · τ · 1

qm·ρ + ϵRSDs

where q′ = max(q1, q2, q3) and τ is the number of repetitions of the signature.

Proof. In this proof, we will adopt a game hopping strategy in order to find the
upper bound. The first game will be the access to the standard signing oracle by
the adversary A. We will then game hop in order to eliminate the cases where
collisions happen, and, through some other games, we will manage to find an
upper bound. We note Pri[Forge] the probability of forgery when considering
game i. The aim of the proof is to find an upper bound on Pr1[Forge].

– Game 1. This is the interaction between A and the real signature scheme.
KeyGen generates (H,y, s′,C′) and A receives (H,y). A can make queries
to each Hashi independently, and can make signing queries. At the end of
the attack, A outputs a message/signature pair, (m,σ). The event Forge
happens when the message output by A was not previously used in a query
to the signing oracle.

– Game 2. In this game, we add a condition to the success of the attacker.
The condition we add is that if there is a collision between outputs of Hash0,
or Hash1, or Hash2, or Hash3, then, the forgery is not valid. The first step is
to look at the number of times every Hashi is called when calling the signing
oracle. The signing oracle contains one call to Hash0, one call to Hash1 and
Hash2, and τ · N to Hash3. The number of queries to Hash0, or Hash1, to
Hash2, or to Hash3 is then bounded from above by q′ + τ ·N · qS , where qi
is the number of queries made by A to Hashi, q

′ = max{q0, q1, q2, q3}, qS is
the number of queries to the signing oracle. We thus have:

|Pr1[Forge]− Pr2[Forge]| ≤
4(q′ + τ ·N · qS)2

2 · 22λ
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– Game 3. The attacker now fails if the inputs to any of the Hashi has already
appeared in a previous query. If that happens, this means that at least the
salt used was the same (we emphasize on at least). We have one salt sampled
every time a query is made to the signing oracle, and it can collide each time
with: a previous salt, or any of the queries to the Hashi. This means, we can
bound this with:

|Pr2[Forge]− Pr3[Forge]| ≤
qS · (qS + q0 + q1 + q2 + q3)

22λ
≤ qS · (qS + 4 · q′)

22λ

– Game 4. When signing a message m, we now replace h1 and h2 with uni-
formly distributed random values. We then compute the challenges Γ and
{i∗(e)}e, and the value vgrinding, by expanding them. There is a difference
with Game 3 during a signing query, if a query to Hash1 or Hash2 was
previously made. However, this does not happen as Game 3 would already
abort due to salt collision which means

Pr4[Forge] = Pr3[Forge]

– Game 5. We replace each come,i, with a uniformly distributed random
value. Since come,i is expanded using e and i, his then means that, to have
a collision on two queries to Hash3, the same salt must be used, which is
already an invalid forgery from the previous games. Thus,

Pr5[Forge] = Pr4[Forge]

– Game 6.We now use the HVZK simulator of the proof of knowledge in order
to generate the views of the parties randomly. A has an advantage of ϵPRG
at most when generating the views (as it is his advantage to distinguish
between a random and a true transcript). Hence, the difference with the
previous game is given by:

|Pr6[Forge]− Pr5[Forge]| ≤ τ · qS · ϵPRG

– Game 7. Finally, we say that an execution with index (e∗, ctr) of a query

h2 = Hash2
(
Hash0(msg), pk, salt, h1, {base(e)α ,mid(e)α }e

)
allows to retrieve a

correct witness if:
• h1 is a query to Hash1, i.e., h1 = H1(salt, {come,i}e,i, {aux(e)s′ , aux

(e)
C′ });

• Each come,i is a query to Hash3, i.e., come,i = Hash3(salt, e, i, seede,i);

• The vector and matrix s′,C′ defined by {state(e
∗)

i }i∈[1,...,N ] form a cor-
rect RSDs solution;
• vgrinding = 0 ∈ {0, 1}w and πBAVC ̸= ⊥.

In such cases, one is able to retrieve the correct witness from {seed(e
∗)

i }i∈[1,...,N ],
and as a consequence is able to solve the specialized Rank Syndrome Decod-
ing instance. This means that

Pr7[Solve] ≤ ϵRSDs
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Finally, we need to look at the upper bound of
∣∣Pr7[Forge ∩ Solve]

∣∣. Solve does
not happen here, meaning that, to have a forgery after a query to Hash2, A
has no choice but to cheat either on Γ or on {i∗(e

∗)}. For that, he can:
• Find a vector s̃′ and a matrix C̃′ such that

(
(1 ∥ s̃′) ·

[
Ir ∥ C̃′

]
·H⊤) ̸=

y but such that Γ ·
(
(1 ∥ s̃′) ·

[
Ir ∥ C̃′

]
·H⊤) = y, which happens with

probability p = 1
qm·ρ ;

• Successfully cheat on the polynomial Pα, which happens with probability
2
N because there are 2 roots to this polynomial.

Cheating on the second round must happen on the τ repetitions thus the
cheating probability is bounded by q′ ·

(
2
N

)τ
+ q′ · τ · 1

qm·ρ . However, because

vgrinding must be equal to 0, the adversary A has a success probability 2−w

for each iteration (e∗, ctr). This results in a probability to cheat of 2−wq′ ·(
2
N

)τ
+ q′ · τ · 1

qm·ρ . Finally, the adversary must have πBAVC ̸= ⊥. Let θ be
the probability that πBAVC = ⊥ namely the probability that the sibling path
exceeds the threshold Topen. This reduces the number of possible challenges
from Nτ to (Nτ ) · (1− θ). Thus, the adversary only has to guess among the

(Nτ ) · (1− θ) challenges which does not fail, but since the set {i∗(e)}e is
uniformly sampled, the forgery will fail with probability θ. As a result, the
adversary can cheat with probability 2τ

(Nτ )·(1−θ) · (1− θ) =
(

2
N

)τ
.

Computing the sum of the aforementioned upper bounds concludes the proof.
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8 Known Attacks

8.1 Generic Attacks against Fiat-Shamir Signatures

It is possible to forge a signature without solving the underlying instance of
the MinRank problem. For signature schemes built by applying the Fiat-Shamir
transformation on a five-pass identification, Kales and Zaverucha proposed in
[KZ20] a forgery achieved by guessing separately the two challenge of the pro-
tocol. It results in an additive cost rather than the expected multiplicative cost.
The cost associated with forging a transcript that passes the first 5 rounds of the
Proof of Knowledge relies on achieving an optimal trade-off between the work
needed for passing the first step and the work needed for passing the second
step. To achieve the attack, one can find an optimal number of repetitions with
the formula:

τ ′ = arg min
0≤τ ′≤τ

{
1

P1
+
( 1

P2

)τ−τ ′}
where P1 and P2 are the probabilities to pass respectively the first τ challenge
τ ′ times and the second challenge τ − τ ′ times.

In our case, P1 corresponds to the probability of having a false-positive in the
polynomial constraints protocol ρ times, and P2 corresponds to the probability
of cheating on the polynomial Pα (see Section 3.1). Therefore, the KZ attack
complexity is given by

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′

(
τ
i

)
pi(1− p)τ−i

+ (
N

2
)τ−τ

′

}

where p = 1
qm·ρ .

8.2 Known Attacks against Rank Syndrome Decoding

Combinatorial attacks. We describe in this section the most efficient combi-
natorial attacks against Rank-SD problem.

Enumeration of basis. Chabaud and Stern proposed an algorithm in [CS96]
which solve the problem by enumerating the possible supports for the vector x.
For each of them, one must translate the equations in Fqm to equations in Fq.

If trying all the different possible supports in Hamming metric is inefficient
due to their large number (there are

(
n
ω

)
vectors of weight ω in Fn2 ), this is a

viable method in rank metric: there are approximately q(m−r)r linear subspaces
in Fqm of dimension r. Moreover, one can always make the assumption that 1
is in the support. There are approximately q(m−r)(r−1) linear subspaces in Fqm
which contains 1.

Hence, one obtains a system that has (n − k)m independent equations and
nr+m variables in Fq. Thanks to the Gaussian elimination, this system can be
solved with O((nr+m)ω) operations in Fq. It is deduced that the complexity of
this attack is upper bounded by O((nr +m)ωq(m−r)(r−1)).



36

Ourivski-Johansson. The attack [OJ02] first apply a well-known reduction, con-
sisting in adding the syndrome y to the code C, and then exhibits a system of
quadratic equations. The aim of this attack is to linearize the equations, which
is done after fixing a number of values. This algorithm solves the problem in

O
(
(rm)ωq(r−1)(k+1)

)
.

GRS algorithm. This method is an adaptation of the information set decoding
attack used in Hamming metric. From the syndrome y of length n−k, the algo-
rithm consists in guessing a set of n− k coordinates which contains the support
of the vector x. One obtains n − k equations and n − k unknown coordinates
of x, which can be recovered by inverting an extracted matrix from H of size
(n− k)× (n− k).

In order to adapt this method to coding theory in rank metric, Gaborit,
Ruatta and Schrek proposed in [GRS16] to consider a linear subspace in Fqm of
dimension r′ ≥ r, and hope that it includes the support of the vector x. The
probability that E of dimension r is included in E′ of dimension r′ (for r′ ≥ r)
is q−(m−r′)r.

Suppose one knows a subspace E′ of dimension r′ which contains E =
Supp(x). It is possible to recover x by solving a linear system as long as

r′n ≤ (n− k)m i.e. r′ ≤
⌈
(n− k)m

n

⌉
Choosing the higher possible value r = ⌈ (n−k)mn ⌉, one gets the probability to

obtain a suitable subspace E′ equal to q−(m−r′)r = q−r⌈
km
n ⌉. As in the previous

attack, one can recover x by executing Gaussian elimination, which can be per-
form in O((n − k)ωmω) operations in Fq. This attack can be achieved with an

average complexity: O((n− k)ωmωqr⌈
km
n ⌉).

Improved GRS. The idea proposed in [AGHT18] is, instead of considering a
linear subspace in Fqm which contains 1, to choose a completely random subspace
E′. If E′ contains a subspace of the form αE, with α ∈ F∗

qm , then one can retrieve
the code word as before. At the cost of an increase in the dimension of the code
(k becomes k + 1, since we multiply by an element α which does not belong to
the code), we can obtain a new subspace that contains αE. This attack can be

achieved with an average complexity: O
(
(n− k)ωmωq(r−1)⌈ (k+1)m

n ⌉
)
, where ω is

in practice equal to 2.

Guessing-enhanced GRS. More recently, [DEGS24] improved the GRS algorithm
for some types of parameters. In a nutshell, their improvement comes from the
fact that it is possible to guess only some bits of elements of Fqm , instead

of an entire element. The gain comes from the term ⌈ (k+1)m
n ⌉, which can get

reduced enough depending on its value. The complexity of their algorithm is

O
(
mint≤mn{((n− k)m+ t)

ω ·max
(
1, qr⌈

(k+1)m−t
n ⌉+t−m

)
}
)
.
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Algebraic attacks. Algebraic attacks amount to solve the system of equations
Hx⊤ = y⊤ using computer algebra techniques like Gröbner basis. Today, the
best algebraic modelings for solving the Rank-SD problem are the MaxMinors
modeling [BBB+20,BBC+20] and the Support Minors modeling [BBC+20,BBB+23].
They can both benefits from a classical improvement that is the hybrid approach,
that consists in specializing some variables with all possible values and solving
the resulting system with less variables, but the same number of equations. In
certain cases, the gain in complexity for solving the specialized system compared
to the original one superseeds the lost in complexity coming from the exhausive
search.

Hybrid methods. As shown in [BBB+23, Section 5], solving a Rank-SD problem
of parameters (q,m, n, k, r) amount to solve qar smaller Rank-SD problems of
parameters (q,m, n− a, k − a, r).

MaxMinors Modeling. Let H,x,y be a Rank-SD problem with parameters

(q,m, n, k, r), i.e. H = (In−k ∥H ′) ∈ F(n−k)×n
qm is uniformly sampled, x ∈ Fnqm

has weight exactly3 r, and y⊤ = Hx⊤.
The idea of the MaxMinors modeling from [BBB+20] is the following: let

E = (E1, . . . , Er) be a basis of Supp(x), and X = (xi,j) ∈ Fr×nq a matrix
representing the coordinates of x in the basis E, then x = (E1, . . . , Er)X.
Considering the extended code C ′ described in the previous section, and a parity-

check H ′ ∈ F(n−k−1)×n
qm of this code, we have the relation :

H ′x⊤ = 0, i.e. (E1, . . . , Er)XH ′⊤ = 0.

This implies that the matrix XH ′⊤ is not full rank, and that all its maximal
minors are equal to zero. By using the Cauchy-Binet formula that expresses the
determinant of the product of two matrices A ∈ Kr×n and B ∈ Kn×r as

|AB| =
∑
T⊂{1..n},#T=r |A|∗,T |B|T,∗, (5)

each of these maximal minors can be expressed as a linear combination of the
maximal minors of the matrix X. Using these minors as new variables, we obtain
a system of

(
n−k−1

r

)
linear equations in

(
n
r

)
variables with coefficients over Fqm ,

that can be unfolded over Fq as m
(
n−k−1

r

)
equations in the same number of

variables (that are searched over Fq).
It is possible to solve the Rank-SD problem with the MaxMinors modeling

as soon as {
m
(
n−k−1

r

)
≥
(
n
r

)
− 1, if the system has 1 solution,

m
(
n−k−1

r

)
≥
(
n
r

)
, if the system has no solution.

(6)

3 We assume the weight r is known. Otherwise, we can try to solve for r = 1, r = 2,
. . . until we find the good r.
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It is possible to improve slightly the solving by puncturing the code on p posi-
tions, as long as

m

(
n− p− k − 1

r

)
≥
(
n− p
r

)
− 1. (7)

With the largest such p, the linear system has almost the same number of equa-
tions than variables. If (6) is not satisfied, then we use the hybrid approach
and specialize a ∈ {0..k} columns of X. The final complexity of the MaxMinors
attack is bounded by

O

(
qar
(
n− a− p

r

)ω)
(8)

as n→∞, where ω is the linear algebra constant.

The Support Minors modeling. The previous modeling is a linearization tech-
nique, that only works with a large hybrid parameter a for large r. An alter-
native method is to rely on the Support Minors modeling, which was initially
introduced in [BBC+20] to solve generic MinRank instances, and that uses a
new set of variables. It has been adapted to instances coming from Fqm -linear
codes in [BBB+23].

Write the received vector v = −mG + x with −mG ∈ C a codeword,
and wR

(
x
)
= r. Then, x = v + mG = (E1, . . . , Er)C so that any row ri of

M(v + mG) ∈ Fm×n
q is in the row space of C. Therefore, all the maximal

minors of the matrix
(
ri

C

)
are equal to 0. This system is described and analyzed

in [BBB+23], where it is shown that it contains the previous equations from the
MaxMinors modeling.

It is conjectured in [BBB+23], based on a careful theoretical analysis of the
system and some experimental heuristics, that it is possible to solve this bilinear
system by linear algebra on a matrix with N rows and M columns, as soon as
N ≥M − 1, with:

N =

k∑
i=1

(
n− i
r

)(
k + b− 1− i

b− 1

)
−
(
n− k − 1

r

)(
k + b− 1

b

)
(9)

− (m− 1)

b∑
i=1

(−1)i+1

(
k + b− i− 1

b− i

)(
n− k − 1

r + i

)
. (10)

M =

(
k + b− 1

b

)((
n

r

)
−m

(
n− k − 1

r

))
. (11)

In this case, the final cost in Fq operations is given by

O
(
m2NMω−1

)
,

where ω is the linear algebra constant and where the m2 factor comes from
expressing each Fqm operation involved in terms of Fq operations. As previously,
it is possible to use an hybrid approach to reach the constraint N ≥ M − 1, or
to puncture the code to get N and M of the same value.
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9 Advantages and Limitations

RYDE being a digital signature scheme based on a zero-knowledge proof of knowl-
edge, the scheme benefits from a number of advantages, but possesses a few
limitations as well.

9.1 Advantages

Difficulty of the underlying problem. The security of the signature scheme
relies on the genuine problem of decoding in rank metric Rank-SD, and there
exists a probabilistic reduction from a generic NP-complete problem to the Rank-
SD problem [GZ14]. The Rank-SD problem has been studied for many years. In
particular the security of the problem corresponds to parameters on the Rank-
Gilbert-Varshamov bound, the hardest area for parameters in which recent al-
gebraic attacks [BBB+23] behave similarly to classical combinatorial attacks.

Size of public key and signature. RYDE offers competitive signature sizes
using very small public keys, which yields a competitive signature + public key
size. For NIST security level I, the sum of the signature and public key sizes of
RYDE gives 3.0 kB, which are both smaller than the post-quantum NIST stan-
dards ML-DSA (Dillitium) and SLH-DSA (SPHINCS+) with 3.7 kB and 7.8 kB
respectively.

No cyclic structure of the underlying problem. Our security is based on a
problem which does not rely on cyclic structure for which the quantum security
is not fully known.

Resilience against Rank-SD attacks. The size of the signature is composed
of two parts: a part related to the MPC that only depends on the security level
(seeds, hashes) and a part related to the parameters of the chosen RSD instance.
Hence, increasing the size of the problem parameters has a limited impact on the
total size of the signature. For example, the RYDE-1-Short instance features a
signature size of 3.0 kB using the parameters (q,m, n, k, r) = (2, 53, 53, 45, 4) for
NIST security level 1. Choosing the parameters (q,m, n, k, r) = (2, 61, 61, 51, 5)
would reach more than 192 bits of security for the underlying problem and re-
sult in a signature size of 3.2 kB for NIST security level 1. Thus, if one discovers
an efficient attack against the Rank-SD problem that forces us to increase the
problem parameters, only the problem parameter part will be impacted and the
overall effect on the signature length will be limited.

Size of the public matrix. In our case, the public matrix can be generated
from a random seed. Now independently of this, the properties of rank metric
make the size of the public matrix very small (and this without additional cyclic
structure), for instance of order 1 kB for the first level of parameters: it could be
an advantage if one were to choose not to generate the public matrix from a seed.
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9.2 Limitations

Growth rate of the signature size. The signature size almost doubles when
increasing the security level. This comes from the fact that both the Rank Syn-
drome Decoding instance and the number of repetitions need to increase linearly,
since both the Fiat-Shamir transform and the RSDs instance need to reach much
higher bit security.

Efficiency. The general TCitH framework (as the other MPCitH frameworks)
involves the generation of lot of pseudorandom objects, which makes RYDE
slower than the NIST post-quantum standard ML-DSA. Besides this, in general,
the efficiency of RYDE is competitive when compared with other post-quantum
signature schemes.

Low-cost devices and embedded systems. RYDE might be particularly
heavy for low-cost devices such as smart cards or embedded systems, although
it has the potential to perform well on hardware as being highly parallelizable.
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A Variant using the VOLEitH Framework

In this section, we provide key and signature sizes for RYDE-v, a variant of RYDE
using the VOLEitH framework as described in Section 3.1.

Instance sk size pk size σ size

RYDE-v-1-Short 32 B 69 B 2 871 B

RYDE-v-1-Fast 32 B 69 B 3 454 B

RYDE-v-3-Short 48 B 101 B 6 528 B

RYDE-v-3-Fast 48 B 101 B 7 836 B

RYDE-v-5-Short 64 B 133 B 11 788 B

RYDE-v-5-Fast 64 B 133 B 13 900 B

Table 9. Keys and signature sizes of RYDE-v (VOLE variant)



42

References

AGHT18. Nicolas Aragon, Philippe Gaborit, Adrien Hauteville, and Jean-Pierre
Tillich. A New Algorithm for Solving the Rank Syndrome Decoding Prob-
lem. In 2018 IEEE International Symposium on Information Theory (ISIT),
pages 2421–2425, 2018.

BBB+20. Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent
Neiger, Olivier Ruatta, and Jean-Pierre Tillich. An algebraic attack on
rank metric code-based cryptosystems. In Advances in Cryptology – EURO-
CRYPT 2020: 39th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020,
Proceedings, Part III, page 64–93, Berlin, Heidelberg, 2020. Springer-Verlag.

BBB+23. Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, and Jean-
Pierre Tillich. Revisiting algebraic attacks on minrank and on the rank
decoding problem. Designs, Codes and Cryptography, 91:1–37, 07 2023.

BBC+20. Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perl-
ner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Improve-
ments of Algebraic Attacks for Solving the Rank Decoding and MinRank
Problems. In Advances in Cryptology – ASIACRYPT 2020, pages 507–536.
Springer International Publishing, 2020.

BBD+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael
Klooß, Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifi-
able zero-knowledge and post-quantum signatures from VOLE-in-the-head.
In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part V, volume 14085 of LNCS, pages 581–615. Springer, Cham, August
2023.

BBM+25. Carsten Baum, Ward Beullens, Shibam Mukherjee, Emmanuela Orsini, Se-
bastian Ramacher, Christian Rechberger, Lawrence Roy, and Peter Scholl.
One tree to rule them all: Optimizing ggm trees and owfs for post-quantum
signatures. In Kai-Min Chung and Yu Sasaki, editors, Advances in Cryptol-
ogy – ASIACRYPT 2024, pages 463–493, Singapore, 2025. Springer Nature
Singapore.
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