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Abstract. We present a signature scheme based on the Syndrome-Decoding problem in rank metric.
It is a construction from multi-party computation (MPC), using a MPC protocol which is a slight
improvement of the linearized-polynomial protocol used in [Fen22], allowing to obtain a zero-knowledge
proof thanks to the MPCitH paradigm. We design two different zero-knowledge proofs exploiting this
paradigm: the first, which reaches the lower communication costs, relies on additive secret sharings and
uses the hypercube technique [AMGH+22]; and the second relies on low-threshold linear secret sharings
as proposed in [FR22]. These proofs of knowledge are transformed into signature schemes thanks to
the Fiat-Shamir heuristic [FS86].
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1 Introduction

RYDE is a digital signature scheme for which the security relies on the hardness to solve the (unstructured)
Rank-Syndrome-Decoding problem, supposed to be quantum resistant. It is based on the MPCitH paradigm,
which provides a generic way to transform a MPC protocol into a zero-knowledge proof [IKOS07]. Even if we
obtain a scheme with good performance based on an additive MPC, we also present another scheme adapted
from the previous one to threshold MPC. Signature schemes are then simply obtained using the Fiat-Shamir
heuristic.

In Section 2, we begin by defining all cryptographic and mathematical notions necessary for understanding.
In Section 3, we give a high-level overview of the signature scheme (and leave low-level instructions to the
specifications document). In Section 4, we describe the chosen parameters and their associated performances.
In Section 5, we detail security proofs of the schemes. In Section 6, we detail attacks against signatures
designed with the Fiat-Shamir transform and attacks against the Rank-Syndrome-Decoding problem.

In our schemes, the MPC protocol is a slight improvement on the linearized polynomials protocol for Rank-
Syndrome-Decoding described in [Fen22]. The Hypercube-MPCitH idea comes from [AMGH+22], while the
Threshold-MPCitH one is from [FJR22].

2 Preliminary notions

2.1 Notations and conventions

Let A a randomized algorithm. We write y ← A(x) the output of the algorithm for the input x. If S is a set,

we write x
$←− S the uniform sampling of a random element x in S. We write x

$,s←− S the pseudo-random
sampling in S with seed s.

We denote by Fq the finite field of order q. We use bold letters to denote vectors and matrices (for example,
u ∈ Fn

q and u ∈ Fq).

A function µ : N→ R is said negligible if, for every positive polynomial p(·), there exists an integer Np > 0
such that for every λ > Np, we have |µ(λ)| < 1/p(λ). When not made explicit, a negligible function in
λ is denoted negl(λ) while a polynomial function in λ is denoted poly(λ). We further use the notation
poly(λ1, λ2, ...) for a polynomial function in several variables.

Two distributions {Dλ}λ and {Eλ}λ indexed by a security parameter λ are (t, ε)-indistinguishable (where t
and ε are N→ R functions) if, for any algorithm A running in time at most t(λ) we have∣∣Pr[ADλ() = 1]− Pr[AEλ() = 1]

∣∣ ≤ ε(λ) ,

with ADist meaning that A has access to a sampling oracle of distribution Dist. The two distributions are
said

– computationally indistinguishable if ε ∈ negl(λ) for every t ∈ poly(λ);

– statistically indistinguishable if ε ∈ negl(λ) for every (unbounded) t;

– perfectly indistinguishable if ε = 0 for every (unbounded) t.

2.2 Security notions

2.2.1 Digital signature schemes We begin by remembering basic definitions and notions of security
about signature schemes.

Definition 1 (Digital signature scheme). A digital signature scheme DSS with security parameter λ is
a triplet of polynomial time algorithms (KeyGen,Sign,Verif) such that:

– The key-generation algorithm KeyGen is a probabilistic algorithm which outputs a pair of keys (pk, sk);
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– The signing algorithm Sign, possibly probabilistic, which takes as inputs a message m to be signed and
the secret key sk, and outputs a signature σ;

– The verification algorithm Verif which takes as inputs the public key pk, the message m and its signature
σ, and outputs a bit b. Output 1 indicate that the signature is considered as valid.

A correct signature scheme verifies the following property: if (pk, sk) ← KeyGen, for all messages m signed
by σ ← Sign(pk,m), we have 1 ← Verif(sk,m, σ). This means that a signature which is correctly generated
is always accepted (when using the right keys).

The standard security notion for digital signature schemes is existential unforgeability under adaptive chosen
message attacks (EUF-CMA) is defined as follows:

Definition 2 (EUF-CMA). We can define the following game Geuf-cma where Sign(sk, ·) is an oracle that
sign a message m∗:
(pk,sk)← KeyGen()
(m,σ)← ASign(sk,·)(pk)

returns 1 if Verif(m,σ, pk) = 1 and m was not queried to Sign(sk, ·)
The signature scheme is EUF-CMA if, for every polynomial adversary A, Pr

(
Geuf-cma(A) = 1

)
is negligible.

2.2.2 Commitment schemes The security of the signature relies on a commitment scheme, which allows
to commit on a value while hiding it until a possible future opening. We consider two properties: the
commitment reveals no information about what is committed (hiding property), and there is only one
(computationally tractable) way to open the commitment (binding property).

A commitment scheme takes as input any element x (the value to commit) and a random tape ρ ∈ {0, 1}λ.
When the secret value x is revealed, the commitment cmt = Com(x, ρ) can be verified by revealing ρ, which
prove that x has not been modified in the meantime.

Definition 3 (Hiding). A commitment scheme Com is computationally hiding if, for every m0,m1, the
distributions of {

Com(m0, ρ), ρ
$←− {0, 1}λ

}
and

{
Com(m1, ρ), ρ

$←− {0, 1}λ
}

are computationally indistinguishable.

Definition 4 (Binding). A commitment scheme Com is computationally biding if, for every PPT algorithm
A, we have:

Pr
(
Com(m, ρ) = Com(m′, ρ′) ∩m ̸= m′, (m, ρ,m′, ρ′)← A

)
< µ(λ)

where µ is a negligible function.

2.2.3 Pseudo-random generators

Definition 5 (Pseudo-random Generators). Let G : {0, 1}∗ → {0, 1}∗, ℓ a polynomial such that G(s) ∈
{0, 1}ℓ(λ) for s ∈ {0, 1}λ. G is a (t, ϵ)-secure pseudo-random generator if:

– ℓ(λ) > λ

– The distributions {G(s)| s← {0, 1}λ} and {r | r $←− {0, 1}ℓ(λ)} are (t, ϵ)-indistinguishable

In our constructions, we need puncturable pseudo-random functions (puncturable PRF). Such a primitive
produces N pseudo-random values and provides a way to reveal all the values but one. A standard construc-
tion of puncturable PRFs can be derived from the tree-based construction of [GGM86], usually denoted as
the GGM construction. The idea is to use a tree PRG in which one uses a pseudorandom generator to expand
a root seed into N subseeds in a structured way. This can be illustrated quite easily with the following figure:
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seedroot

seedint1

seed1 seed2

seedint2

seed3 seed4

Fig. 1: Example of GGM tree

Now, imagine one is looking to reveal seed1, seed3, and seed4, and hide seed2. Then, all he has to do is
reveal seedint2 and seed1. It is impossible to retrieve seed2, as we don’t know the previous seed, but it is
possible to retrieve the others. In this small example, we took N = 4. This is especially interesting as, in the
additive-based MPCitH transformation we will see later, we reveal N − 1 leaves. This means that we can
do this operation by revealing only log2 N leaves instead of N − 1. More generally, for a GGM tree with N
leaves and given a subset I ⊂ [1, N ], it is possible to reveal all the leaves but the ones in I by revealing at
most |I| log2( N

|I| ) nodes.

2.2.4 Merkle trees A collision-resistant hash function (that we will note HM ) can be used to build a
Merkle Tree. Given inputs v1 . . . vN , we define Merkle(v1 . . . vN ) as:

Merkle(v1 . . . vN ) =

{
HM (Merkle(v1 . . . vN

2
)∥Merkle(vN

2 +1 . . . vN )) if N > 1

HM (v1) if N = 1
(1)

A Merkle Tree is a special case of vector commitment scheme allowing efficient opening of a subset of the
committed values vi. Given I ⊂ [1, N ], it is possible to verify that the (vi)i∈I were indeed used to build the
Merkle Tree only by revealing at most |I| log2

(
N
|I|

)
hash values. To proceed, we just need to reveal the sibling

paths of the (vi)i∈I . Those paths are called the authentication paths and are denoted auth((v1 . . . vN ), I).

2.2.5 Zero-knowledge proofs of knowledge We define here the concept of proof of knowledge, following
[AFK21] notations. Let R an NP-relation. (x, ω) ∈ R is a statement-witness pair where x is the statement
and ω an associated witness. The set of valid witness for a statement x is R(x) = {ω | (x, ω) ∈ R}. A prover
P wants to use a proof of knowledge to convince a verifier V that he knows a witness ω for a statement x.

Definition 6 (Proof of knowledge). A proof of knowledge for a relation R with soundness ϵ is a two-party
protocol between a prover P and a verifier V with a public statement x, where P wants to convince V that
he knows ω such that (x, ω) ∈ R.
Let us denote ⟨P(x, ω),V(x)⟩ the transcript between P and V. A proof of knowledge must be perfectly complete,
i.e.:

Pr
(
Accept← ⟨P(x, ω),V(x)⟩

)
= 1

If there exists a polynomial time prover P̃ such that:

ϵ̃ = Pr
(
Accept← ⟨P̃(x),V(x)⟩

)
> ϵ

then there exists an algorithm E, called extractor, which given rewindable access to P̃, outputs a valid witness
ω′ ∈ R(x) in polynomial time in terms of (λ, 1

ϵ̃−ϵ ) with probability at least 1
2 .

We now introduce the notion of honest-verifier zero-knowledge for a proof of knowledge (PoK):

Definition 7 (Honest-Verifier Zero-Knowledge). A PoK satisfies the Honest-Verifier Zero-Knowledge
(HZVK) property if there exists a polynomial time simulator Sim that given as input a statement x and
random challenges (ch1, ..., chn), outputs a transcript {Sim(x, ch1, ..., chn),V(x)} which is computationally
indistinguishable from the probability distribution of transcripts of honest executions between a prover P(x,w)
and a verifier V(x).
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2.2.6 Fiat-Shamir transform The Fiat-Shamir transform is a generic process allowing to transform an
HVZK proof of knowledge into a signature scheme. The main adaptation lies in the removal of the interaction
in the protocol: one needs to pull the challenges in a pseudo-random (and verifiable) way to sign a message
without the assistance of a verifier. Note that the protocol must be repeated several times to achieve the
desired level of security. We note τ the number of repetitions. One will see below that there is an effective
attack against such signatures and so, τ must be chosen carefully (not too small).

Let us describe this transformation for the case of a 5-round protocol. The prover begins as in the zero-
knowledge proof by committing all the auxiliary information. At the end of the first step, the prover computes:

h1 = H1(salt,m, (h
(e)
0 )e∈[1,τ ])

where H1 is an hash function, h(e)
0 is the first-step commitment of the eth execution of the protocol, and salt a

random value in {0, 1}2λ. The prover obtains the first challenge from h1 by using a XOF (extendable-output
function).

The second challenge is generated in a similar way: the prover computes an element h2 thanks to an other
hash function H2 and the other information computed during the step 3. The prover obtains the second
challenge from h2 by using a XOF.

The signature σ therefore consists of sending:

– salt which allows to compute commitments and the Fiat-Shamir hashes,

– h1 as commitment of the initial values,

– h2 as hash of all responses of the first challenge,

– each response rsp of the second challenge.

The signature is:
σ = (salt, h1, h2, (rsp

(e))e∈[1,τ ])

2.3 MPC for proofs of knowledge

2.3.1 Multi-Party Computation We recall here the formalism proposed by [FR22]. The sharing of
a value x into N parties is denoted (JxK1, ..., JxKN ), where JxKi is the share of index i for i ∈ [1, N ], and
JxKJ = (JxKi)i∈J is the subset of shares for J ⊂ [1, N ].

Definition 8 (Threshold LSSS). Let F a finite field and t an integer in [1, N ]. A (t,N)-threshold Linear
Secret Sharing Scheme is a method to share a secret s ∈ F into N shares JsK = (JsK1, ..., JsKN ) ∈ FN such
that the secret can be rebuilt from any subset of t shares, while the knowledge of any subset of t − 1 shares
(or less) gives no information on s.

Formally, a (t,N)−threshold LSSS is a pair of algorithms:{
Share : F×R→ FN

ReconstructJ : Ft → F

where R denotes some randomness space, and ReconstructJ is indexed by a subset J ⊂ [1, N ] of t elements.
These algorithms must verify the following properties:

– Correctness: for every x ∈ F, r ∈ R and J ∈ [1, N ] such that |J | = t: let JxK = Share(x, r). We have:

ReconstructJ(JxKJ) = x

6



– Perfect (t− 1)-privacy: For every s0, s1 ∈ F, I ⊂ [1, N ] with |I| = t− 1, the two distributions:{
Js0KI |

r
$←− R

Js0K[1,N ] ←− Share(s0, r)

}
and

{
Js1KI |

r
$←− R

Js1K[1,N ] ←− Share(s1, r)

}
are perfectly indistinguishable.

– Linearity: for every v, v′ ∈ Ft, α ∈ F and subset J ⊂ [1, N ] of t elements:

ReconstructJ(αv + v′) = αReconstructJ(v) + ReconstructJ(v
′)

Below are the two specific secret sharing which are used in RYDE:

Definition 9 (Additive secret sharing). An additive secret sharing over a finite field F is an (N,N)-
threshold LSSS where R = FN−1. The Share algorithm is defined as

Share : (s, (r1, ..., rN−1))→ JsK =

(
r1, ..., rN−1, s−

N−1∑
i=1

ri

)
The Reconstruct[1,N ] algorithm consists in computing the sum of all the shares.

Definition 10 (Shamir’s secret sharing). The Shamir’s secret sharing over a finite field F is an (ℓ+1, N)-
threshold LSSS with R = Fℓ. Let e1, ..., eN be public distinct elements of F∗. The Share algorithm is defined
as follows:

– Build a polynomial: P (X) = s+
∑ℓ

i=1 riX
i

– For each i ∈ [1, N ]: compute JsKi = P (ei)

The ReconstructJ algorithm consists in recovering P with polynomial interpolation from known evaluations
JsKJ = (P (ei))i∈J . The reconstructed secret is then given by the constant term s of P .

A multi-party computation protocol is an interactive protocol involving several parties whose objective is to
jointly compute a function f on the share JxK they received at the begin of the protocol, so that they each
get a share of Jf(x)K at the end of the execution. In the restricted MPC model described in [FR22], at each
step the parties can perform one of the following actions:

– Receiving elements: it can be randomness sent by a random oracle, or the shares of an hint which depends
on the witness ω and the previous elements sent.

– Computing: since the sharing is linear, the parties can perform linear transformations on the shared
values.

– Broadcasting: it is sometimes necessary to open some values (which give no information about the witness
ω) to execute the protocol.

For application of the MPCitH paradigm, this MPC protocol is only required to be secure in the semi-honest
setting: we suppose that all parties rightfully perform their computation. The view of a party is made up of
all the information available to this party when executing the protocol: its input shares and the messages it
receives from other parties.

Proposition 1 ([FR22]). Given a (ℓ+1, N)-threshold LSSS, the following property holds; for each v ∈ Fℓ+1

and each subset J ⊂ [1, N ] of ℓ+1 elements, there exists a unique sharing JxK ∈ FN such that JxKJ = v, and
such that for all J ⊂ [1, N ] of ℓ+ 1 elements:

ReconstructJ (JxKJ ) = ReconstructJ(v).

One deduces that there exists an algorithm ExpandJ which returns the unique sharing from a subset J of
the shares. For example, in the Shamir’s secret sharing, Expand builds the Lagrange polynomial from the
known evaluations and outputs the image of each party’s point.
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2.3.2 MPC-in-the-Head paradigm The MPC-in-the-Head paradigm, introduced by [IKOS07], is a
framework allowing to convert a generic secure multi-party computation (MPC) protocol to a zero-knowledge
proof. Let us assume we have a ℓ-private MPC protocol in which N parties P1, . . . ,PN securely and correctly
evaluate a function f on a secret input x. The verifier asks the prover to reveal the views of ℓ parties
(which include input shares and communications with other parties). In this construction, the zero-knowledge
property comes from the ℓ-privacy of the MPC protocol.

In what follows, we assume that all the manipulated MPC protocols fit the model decribed in [FR22]: they
use (ℓ+ 1, N)-threshold LSSS and only uses the operations decribed in the previous subsection.

We want to build a zero-knowledge proof of knowledge of a witness for a statement x such that (x, ω) ∈ R.
Assume that we have a MPC protocol which evaluates a function f on the witness ω and has the security
properties mentioned above. The protocol works as follows:

– each party receives as input a share JωKi, where JωK is a threshold LSSS sharing of ω,

– the function f outputs ACCEPT if (x, ω) ∈ R, REJECT otherwise,

– the view of ℓ parties gives no information about the witness ω.

In our case, the parties take as input a linear sharing JωK of the secret ω (one share per party) and they
compute one or several rounds in which they perform three types of actions:

Receiving randomness: the parties receive a random value ϵ from a randomness oracle OR. When calling
this oracle, all the parties get the same random value ϵ.

Receiving hint: the parties can receive a sharing JβK (one share per party) from a hint oracle OH . The
hint β can depend on the witness w and the previous random values sampled from OR.

Computing & broadcasting: the parties can locally compute JαK := Jφ(v)K from a sharing JvK where φ
is an F-linear function, then broadcast all the shares JαK1, . . . , JαKN to publicly reconstruct α := φ(v).
The function φ can depend on the previous random values {ϵi}i from OR and on the previous broadcast
values. One should note that in the case of additive sharing, a single party needs to add a constant.

To build the zero-knowledge proof, the prover begins by building a sharing JωK of ω. The prover then
simulates all the parties of the protocol until the computation of Jf(ω)K (which should correspond to a
sharing of ACCEPT, since the prover is supposed to be honest), and sends a commitment of each party’s
view. The verifier then chooses ℓ parties and asks the prover to reveal their views. The verifier checks
the computation of their commitments. Since only ℓ parties have been opened, the revealed views give no
information about ω.

A naive way for the prover to execute the protocol would be to simulate all parties, but each party
computes LSSS sharing of all involved elements. It implies that for each a in these elements, a sharing
JaK = (JaK1, ..., JaKN ) contains redundancy when ℓ < N − 1. One deduces that it is necessary to perform the
calculations of the associated MPC protocol for only a subset S of ℓ+1 out of N parties, and commit them
will be enough to ensure the soundness of the proof. When ℓ + 1 is small, emulating the MPC protocol is
cheap and leads to good overall performances: it is the high-level idea in Threshold-MPCitH. This technique
to save computation is not possible when we use the additive sharing (since ℓ = N − 1). However, in the
additive setting, [AMGH+22] showed that the prover only need to emulate 1 + log2 N parties, and not N .

2.3.3 Soundness Consider a malicious prover who want to convince the verifier that he knows a witness
ω for the instance x (although it does not). Two cases can happen:

– The challenge of the verifier are such that the protocol results in a false positive,

– The malicious prover cheats for some party i ∈ [1, N ] (and hence has inconsistent view w.r.t. the com-
mitments).

8



Feneuil and Rivain describe in [FR22] a strategy allowing a malicious prover to convince the verifier with
probability:

1(
N
ℓ

) + pη
ℓ (N − ℓ)

ℓ+ 1

where pη is the false positive rate of the associated MPC protocol (i.e. is the probability that the MPC
protocol output ACCEPT even if (x, ω) ̸∈ R). In the additive case (ℓ = N − 1), it leads to a soundness error
of

1

N
+ pη

(
1− 1

N

)
.

2.4 Technical lemmas

We present here technical lemmas that will be useful in future proofs. The proofs of these lemmas can be
found in the original references.

Lemma 1 (Splitting Lemma [PS00]). Let A ⊂ X × Y such that Pr[(x, y) ∈ A] ≥ ϵ.
For any α < ϵ, define

B =
{
(x, y) ∈ X × Y | Pry′∈Y [(x, y

′) ∈ A] ≥ ϵ− α
}

and B̄ = (X × Y ) \B

then:

– Pr[B] ≥ α

– ∀(x, y) ∈ B,Pry′∈Y [(x, y
′) ∈ A] ≥ ϵ− α

– Pr[B|A] ≥ α

ϵ

2.5 Mathematical background

2.5.1 q-polynomials We begin by recalling here the main properties of finite fields. Let q a prime number
and m ∈ N. Remember that Fqm is a linear space over Fq. The q-polynomials, introduced in [Ore33], are
very useful tools in finite vector spaces: in particular, they allow to characterize linear subspaces.

Definition 11 (q-polynomial). A q-polynomial of q-degree r is a polynomial in Fqm [X] of the form:

P (X) = Xqr +

r−1∑
i=0

Xqipi with pi ∈ Fqm

Proposition 2. Let P a q-polynomial in Fqm [X], α, β ∈ Fq, x, y ∈ Fqm . Then:

P (αx+ βy) = αP (x) + βP (y)

Proof. Comes directly from the linearity over Fq of the Frobenius endomorphism: x→ xq.

One can then define a linear subspace in Fqm with a q-polynomial.

Proposition 3. The set of roots of a non zero q-polynomial of degree r is a linear subspace of dimension
lower than or equal to r.

Proof. Let P a q-polynomial of degree r. One can see P as a linear application from Fqm to Fm
q . As an

endomorphism kernel, the set of zeros forms a linear space.
Since it is a polynomial of degree qr, P has at most qr roots, which allows to obtain the majoration of the
dimension.

Proposition 4 ([Ore33]). Let E a linear subspace of Fqm of dimension r ≤ m. Then there exists a unique
monic q-polynomial of q-degree r such that all element in E is a root of P .
P is called the annihilator polynomial of E.
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2.5.2 Rank metric While the Hamming metric – which counts the number of nonzero coordinates of a
code word – is relevant in the case of a prime field (especially F2), the rank metric relies on an extension
field Fqm .

Definition 12. Let x = (x1, ..., xn) ∈ Fn
qm , and B = (b1, ..., bm) an Fq-basis of Fqm . Each coordinate xi can

be associated with a vector (xi,1, ..., xi,m) ∈ Fm
q such that:

xi =

m∑
j=1

xi,jbj

The matrix M(x) = (xi,j)(i,j)∈[1,n]×[1,n] is called matrix associated to the vector x.
The rank weight is defined as: WR(x) = Rank(M(x)).
The distance between two vectors is given by: d(x,y) = WR(x− y).
The support of x is the linear subspace of Fqm generated by its coordinates: Supp(x) = ⟨x1, ..., xn⟩

Remark: The rank weight and the support of a vector is independent of the choice of the basis. On the other
hand, the rank weight of x is obviously equal to the dimension of its support.

It is clear that the metric takes on its full meaning in the case of field extensions: if we were to place ourselves
on a prime field, any non zero vector would have weight exactly 1. It also follows that the rank metric is less
discriminating since increased by the Hamming weight.

The number of possible r-dimensional supports in Fqm is given by the gaussian binomial coefficient:[
m
r

]
q

=

r−1∏
i=0

qm − qi

qr − qi

One often use the following approximation:
[
m
r

]
q

≈ qr(m−r).

2.6 Rank Syndrome Decoding problem

We want to build a signature based on a standard difficult problem: the syndrome decoding. However, rather
than using the Hamming metric, we use here the rank metric, which allows to build similar constructions, but
with different properties. We will begin by recalling the fundamental definitions inherent to coding theory.

Definition 13. A linear code C on a finite field F of dimension k and length n is a linear subspace of Fn of
dimension k. The elements in C are called the code words. One says that C is a [n, k]F code.

Two types of matrices can define a code:

Definition 14. Let C a [n, k]F code. A matrix G ∈ Fk×n is a generator matrix of C if its rows form a basis
of C, or equivalently:

C = {mG,m ∈ Fk}

A matrix H ∈ F(n−k)×n is a parity check matrix of C if its rows form a basis of C⊥, or equivalently:

C = {c ∈ Fn,Hc⊺ = 0⊺}

Remark: In order to lighten the notations, we often omit the transpose symbol for the vertical vectors

As in the case of the Hamming metric with random codes, syndrome decoding is a hard problem in the rank
metric:
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Definition 15. Let Fqm be the finite field of size qm. Let (n, k, r) be positive integers such that k ≤ n. Let
I ∈ F(n−k)×(n−k)

qm the identity matrix of dimension n − k on Fqm . The Rank Syndrom Decoding (Rank-SD)
problem with parameters (q,m, n, k, r) is the following one:
Let H, x and y such that:

– H ′ is uniformly sampled from F(n−k)×k
qm , and H = (I ||H ′) ∈ F(n−k)×n

qm

– x is uniformly sampled from {x ∈ Fn
qm ,WR(x) ≤ r}

– y = Hx

From (H,y), find x.

Remark: Choosing the parity-check matrix H in standard form does not decrease the hardness of the
problem, because obtaining this form from a random matrix can be done in polynomial time. As we see
below, constraining this form allows us to share only the first k coordinates of x.

As we see later, there are two main approaches to solve the Rank-SD problem. The first one relies on
combinatorial arguments: it consists in guessing the support of the error. The second one relies on algebraic
computations, which consist in putting the problem into polynomial equations, then solving them using a
Gröbner basis algorithm.

3 Description of the signature scheme

Here we explain how to build our signature scheme from a MPC protocol checking the solution of a Rank-SD
instance. The MPC-in-the-Head paradigm allows us to convert the protocol first into a zero-knowledge proof,
then into a signature scheme using the Fiat-Shamir transform.

3.1 MPC rank checking protocol

From the property 4 in the previous section, one can deduce a polynomial characterization of the rank of a
vector: for all x ∈ Fqm , WR(x) ≤ r if and only if there exists a q-polynomial L of q-degree r such that for
all i ∈ [1, n]: L(xi) = 0. The following MPC protocol is an optimization of the one proposed in [Fen22].

We now describe a MPC protocol to check the maximum rank of a vector x = (x1, ..., xn) ∈ Fqm . Let
U = Supp(x) = ⟨x1, ..., xn⟩ the vector space generated by its coordinates, and LU the annihilator polynomial
of U :

LU =
∏
u∈U

(X − u) ∈ Fqm [X]

LU is a q-polynomial, so it can be written as:

LU (X) =

r−1∑
i=0

βiX
qi +Xqr

Since the support is defined up to multiplication by a constant, one can always assume that it contains 1
(see [AMAB+20]) without impacting the security of the scheme. So, we get that 1 is a root of the linearized
polynomial LU , we can consequently deduce a relation between its coefficients, and send one fewer value.
We can suppose that β = (β1, ..., βr−1) ∈ Fr−1

qm and β0 = −
∑r−1

i=1 βi − 1.

Rather than checking separately that each xi is a root of LU , we batch all these checks by uniformly sampling
γ1, ..., γn in an extension Fqm·η of Fqm and checking that:

n∑
j=1

γjLU (xj) = 0

11



If one of the xi is not a root of LU , the equation above is satisfied only with probability 1
qmη . We have

n∑
j=1

γjL(xj) =

n∑
j=1

γj

(
r−1∑
i=0

βix
qi

j + xqr

j

)

=

n∑
j=1

γjx
qr

j +

r−1∑
i=0

βi ·
n∑

j=1

γjx
qi

j

=

n∑
j=1

γjx
qr

j + β0

n∑
j=1

γjxj +

r−1∑
i=1

βi ·
n∑

j=1

γjx
qi

j

=

n∑
j=1

γjx
qr

j +
(
−

r−1∑
i=1

βi − 1
) n∑

j=1

γjxj +

r−1∑
i=1

βi ·
n∑

j=1

γjx
qi

j

=

n∑
j=1

γjx
qr

j +
(
−

r−1∑
i=1

βi

) n∑
j=1

γjxj +

r−1∑
i=1

βi ·
n∑

j=1

γjx
qi

j −
n∑

j=1

γjxj

=

n∑
j=1

γj(x
qr

j − xj) +

r−1∑
i=1

βi ·
n∑

j=1

γj(x
qi

j − xj)

Defining z = −
∑n

j=1 γj(x
qr

j −xj), and ωi =
∑n

j=1 γj(x
qi

j −xj), proving the equation is equivalent to proving
that:

z = ⟨β, ω⟩

with β the vector of coefficients of LU . This can be checked in the same way as in the multiplication
checking protocol from [BN20]. Therefore, it is necessary to introduce a random vector a ∈ Fr

qm·η and
c = −⟨β,a⟩ ∈ Fqm·η .

Since we consider a Rank-SD instance with H in standard form H = (I ||H ′), the secret solution x ∈ Fn
qm

can be split it in two parts x = (xA ∥ xB) with xA ∈ Fk
qm and xB ∈ Fn−k

qm , such that

y = Hx ⇔ xA = y −H ′xB .

For a given instance, (H,y), the secret solution can then be fully (and linearly) recovered from xB by
x = (y −H ′xB ∥ xB).

The resulting MPC protocol, denoted Πη, is presented in figure 2. In a high-level point of view, the difference
between this MPC protocol and the one described in [Fen22] comes from the fact that we assume that 1 is
in the support of x to save communication. However, this difference does not impact the security analysis
(i.e. the false-positive rate) of the protocol, see below.

Proposition 5 ([Fen22]). If WR(x) ≤ r, then the protocol Πη always accepts. If WR(x) > r, the protocol
accepts with probability at most: pη = 2

qmη − 1
q2mη .

We call pη the false positive rate of Πη.

Proof. The protocol takes place in two stages: from steps 1 to 4, it computes the values z and ω. From step
5, it checks that z = ⟨β,ω⟩. If WR(x) > r, there exists k ∈ [1, n] such that L(xk) ̸= 0.
There are two possibilities for the protocol to accept in this case:

– either
∑n

j=1 γjL(xj) = 0, which occurs with probability 1
qmη ;

– or z ̸= ⟨β,ω⟩ but the protocol still accepts, which occurs with probability 1
qmη (according to the false-

positive rate of the [BN20] multiplication checking protocol adapted for the matrix setting, see [Fen22]
for details).
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Public values. instances of a Rank-SD problem : H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

Inputs. Each party takes a share of JxBK where x ∈ Fn
qm . Let U a Fq-linear subspace of Fqm of dimension r which contains

x1, . . . , xn and has for annihilator polynomial L =
∏

u∈U (X − u). Each party takes a share of the following sharing as inputs :

JLK =
∑r−1

i=1 JβiK(Xqi −X) + (Xqr −X), JaK where a is uniformly sampled from Fr−1
qm·η and JcK such that c = −⟨β,a⟩.

MPC Protocol :

1. The parties sample uniformly random : (γ1, ..., γn, ε)
$←− Fn+1

qm·η .

2. The parties locally compute JxAK = y −H′JxBK and JxK = (JxAK || JxBK).

3. The parties locally compute JzK = −
∑n

j=1 γj

(
JxjKq

r
− JxjK

)
.

4. The parties locally compute for all k from 1 to r − 1 : JωkK =
∑n

j=1 γj

(
JxjKq

k
− JxjK

)
.

5. The parties locally compute JαK = ε · JωK + JaK.

6. The parties open α.

7. The parties locally compute JvK = ε · JzK− ⟨α, JβK⟩ − JcK.

8. The parties open v.

9. The parties output ACCEPT if v = 0, and reject otherwise.

Fig. 2: Protocol Πη : checking that an input is solution of an instance of Rank-SD problem

Since these two events are independent, the false positive rate is:

pη =
1

qmη
+

(
1− 1

qmη

)
1

qmη
≤ 2

qmη
.

3.2 Conversion to zero-knowledge proof optimized with the hypercube technique

We start by presenting the main idea of a proof of knowledge optimized with the hypercube technique as
proposed by [AMGH+22]: sharing a secret in N = 2D additive shares, and arranging them in a geometrical
structure. Let us consider an hypercube of dimension D, each dimension having 2 slots. These 2D shares
are called “leaf parties”. They can be indexed in two ways: either by an integer in [1, 2D], or by a vector of
coordinates (i1, ..., iD) ∈ [1, 2]D.

Since we use an additive secret sharing, one can intertwine several executions where each party (what we
will call a “main party”) can be the sum of a subset of leaves, such that these subsets form a partition of
the leaves. We build here D intertwined protocols, and each of them has 2 main parties. For each dimension
d ∈ [1, D], each main share is the sum of the 2D−1 leaves which have the same value for id. The main parties
will always be indexed by (d, k) ∈ [1, D]× [1, 2].

The leaf parties are the first to be generated. The process is the same as in the generation of additive shares in
a standard MPCitH transformation: the prover uses a GGM tree (as a puncturable pseudo-random function)
to derive N seeds from a root seed seed. From the ith leaf seed, each party i ∈ [1, N − 1] pseudo-randomly
generates the input shares JxBKi, JβKi, JaKi and JcKi (see figure 2 for the definition of these shares) . The last
share for i = N is computed such that we obtain a valid secret sharing of the values (except for a which
is random and therefore can be sample from seedN ). Then the prover can derive the shares of the “main
parties” by summing the shares according to the partitions. For example, the share of c of the main party
(1, k) will be

∑
i2,...,iD

JcK(k,i2,...,iD), which is the sum of the 2D−1 leaf shares such that i1 = k.

The resulting protocols are presented in figures 3, 4 and 5.

An important remark is that one could have chosen a number of main parties per dimension n ̸= 2. The size
of the signature depends on N = nD, but not independently on n and D. For example, choosing the MPC
parameters (n,D) = (2, 8) or (n,D) = (4, 4) will have no impact on the signature size, since nD = 256 in
the both cases. However, it is in our interest to choose n as small as possible: this will increase the number
D of interleaved MPC protocols, but reduce the number of computations (which are much more expensive).
Consequently, we always choose n = 2 and select different dimensions D.
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Public data: An instance of a Rank-SD problem: H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

The prover wants to convince the verifier that he knows the solution x ∈ Fn
qm of the instance, i.e. such that y = Hx.

Step 1: Commitment

1. The prover computes β = (βk)k∈[1,r−1] ∈ Fr
qm the coefficients of the annihilator q-polynomial L(X) associated to x such that

L(X) =
∏

u∈U (X − u) = (Xqr −X) +
∑r−1

k=1 βk(X
qk −X) and ∀j ∈ [1, n], L(xj) = 0

2. The prover samples a seed: seed $←− {0, 1}λ.

3. The prover expand seed recursively using a GGM tree to obtain N leaves and seeds (seedi′ , ρi′ ).

4. For each i ∈ [1, N − 1]:

- The prover samples (JxBKi, JβKi, JaKiJcKi)
$,seedi←− PRG where PRG is a pseudo-random generator

- statei = seedi

5. For the share N :

- The prover samples JaKN
$,seedN←− PRG

- The prover computes JxBKN = xB −
∑N−1

i=1 JxBKi, JβKN = β −
∑N−1

i=1 JβKi and JcKN = −⟨a,β⟩ −
∑N−1

i=1 JcKi
- stateN = (seedN , JxBKN , JβKN , JcKN )

6. The prover computes the commitments: cmti = Com
(
statei, ρi

)
, where ρi is a random tape sampled in {0, 1}λ from seedi for each

i ∈ [1, N ].

7. The prover commits all the shares: h0 = H(cmt1, · · · , cmtN )

8. The prover computes the main parties by summing all the leaves associated. Indexing each party by its coordinates on the
hypercube: i = (i1, ..., iD) where ik ∈ [1, 2]. For all main party index p = (d, k) ∈ {(1, 1), ...(D, 2)}: JxBK(d,k) =

∑
i:id=kJxBKi,

JβK(d,k) =
∑

i:id=kJβKi, JaK(d,k) =
∑

i:id=kJaKi and JcK(d,k) =
∑

i:id=kJcKi.

Step 2: First Challenge

9. The verifier randomly samples
(
(γj)j∈[1,n], ϵ

)
∈ Fn

qm·η × Fqm·η and sends it to the prover.

Step 3: First Response

10. For each dimension d ∈ [1, D], the prover executes the algorithm in Fig. 4 on the main parties of the current dimension:
(d, 1), (d, 2). He computes (JαK, JvK, Hd)←− Algorithm4(

(
Pd, (γj)j∈[1,n], ϵ

)
11. The prover commits the executions: h1 = H(H1, ..., HD)

Step 4: Second Challenge

12. The verifier randomly samples i∗ ∈ [1, N ] and sends it to the prover.

Step 4: Second Response and verification

13. The prover sends to the verifier cmti∗ and JαKi∗ ; and the sibling path of the share i∗ to retrieve (statej , ρj)j ̸=i∗ .

14. The verifier can deduce all the leaves (with the exception of index i∗), and recover h0 using the sibling path and cmti∗ .

15. For all dimension d ∈ [1, D], the verifier runs the algorithm in Fig. 5 to get JαK, JvK and Hd. He checks:

- v = 0 for all the executions.

- α is the same for all D main executions.

- h1 = H(H1, ..., HD)

Fig. 3: Protocol optimized with the hypercube technique

On the other hand, it is not necessary to do computations on all the main shares. Once one has done the
calculations on the main parties on a dimension d ∈ [1, D], one knows the value of α for the protocol.
Therefore, one can do the computations for only n−1 parties of protocols associated to all other dimensions,
since one can deduce the value of the last share. This makes a total of only n + (n − 1)(D − 1) computed
parties, and choosing n = 2 makes this value the smallest as possible with N = nD fixed. One obtains that
it is necessary to do computations for only D + 1 main parties.
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Inputs : A set of shares for the dimension k: (JxBK, JβK, JaK, JcK) and a protocol challenge
(
(γj)j∈[1,n], ϵ

)
Outputs : A set of shares JvK and a commitment H of the execution

For each party i ∈ [1, N ] :

- Compute JxAKi = y −H′JxBKi and JxKi = (JxAKi || JxBKi)

- JzKi = −
∑n

j=1 γj

(
JxjKq

r

i − JxjKi
)

- Compute JωkK =
∑n

j=1 γj

(
JxjKq

k
− JxjK

)
for each k ∈ [1, r − 1]

- Compute JαKi = ϵ · JwKi + JaKi and reveals α

- Compute JvKi = ϵ · JzKi − ⟨α, JβKi⟩ − JcKi

The parties compute together : H = H (JαK, JvK))

Fig. 4: Execution of the MPC protocol Πη on a set of main shares

Inputs: A leaf i∗ that one does not reveal, the main party shares JαK and JvK on which the hidden leaf i∗ depends on, all the other
main parties shares (JxBK, JβK, JaK, JcK).

Outputs: JαK, JvK and a commitment H of the execution

For all the main parties:

If the party p = (d, k) contains the leaf i∗, i.e. i∗d = k:

Set JvKi∗ such that v = 0

Else:

Do the same computations as in Πη to obtain the correct shares JαKp and JvKp

Compute H = H (JαK, JvK)

Fig. 5: Check the executions of the MPC protocol Πη on a the main parties
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3.2.1 Application of the Fiat-Shamir transform We deduce from the Fiat-Shamir transform a way to
convert a proof of knowledge to a signature scheme, by transforming the proof in a non-interactive protocol.
The signature scheme and its verification algorithm are depicted in figures 6 and 7. Note that we use a value
salt, as in [FJR22], in order to increase the security of the scheme as it reduces the probability of seeds
collision.

Remark: At the step 11 of the signature scheme, sending the state of all shares j ̸= i∗ consists on:

– If i∗ = N , sending the sibling path associated to the share N ;

– If i∗ ̸= N , sending the sibling path associated to the share i∗ and the shares Jx(e)
B KN , Jβ(e)KN and Jc(e)KN

to recover all the states j ̸= i∗.

We show in Section 5.2 that this scheme guarantees good security against EUF-CMA attacks.
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Inputs

- Secret key sk = xB with x = (xA ||xB) ∈ Fn
qm such that wR

(
x
)
= r

- Public key pk = (H,y) with H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

such that y = Hx

- Message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample a random salt value salt
$←− {0, 1}2λ

2. Compute β = (βk)k∈[1,r−1] ∈ Fr
qm the coefficients of the annihilator q-polynomial L(X) associated to x such that L(X) =∏

u∈U (X − u) = (Xqr −X) +
∑r−1

k=1 βk(X
qk −X) and ∀j ∈ [1, n], L(xj) = 0

3. For each iteration e ∈ [1, τ ]:

- Sample a root seed : seed(e) ← {0, 1}λ

- Expand seed(e) recursively with a GGM tree to obtain N seeds and randomness (seed
(e)

i′ , ρi′ )

For each i ∈ [1, N ] :

If i′ ̸= N :

- Sample (Jx(e)
B Ki, Jβ(e)Ki, Ja(e)KiJc(e)Ki)

$,seed
(e)
i←− PRG where PRG is a pseudo-random generator

- state
(e)
i = seed

(e)
i

Else :

- Sample Ja(e)KN
$,seed

(e)
N←− PRG

- Compute Jx(e)
B KN = x

(e)
B −

∑N−1
i=1 Jx(e)

B Ki, Jβ(e)KN = β(e)−
∑N−1

i=1 Jβ(e)Ki and Jc(e)KN = −⟨α(e),β(e)⟩−
∑N−1

i=1 Jc(e)Ki

- state
(e)
N = (seed

(e)
N , Jx(e)

B KN , Jβ(e)KN , Jc(e)KN )

- Compute cmt
(e)
i = H0(salt, e, state

(e)
i )

4. For all main party index p = (d, k) ∈ {(1, 1), ...(D, 2)} : Jx(e)
B K(d,k) =

∑
i:id=kJx(e)

B Ki, Jβ(e)K(d,k) =
∑

i:id=kJβ(e)Ki, Ja(e)K(d,k) =∑
i:id=kJa(e)Ki and Jc(e)K(d,k) =

∑
i:id=kJc(e)Ki.

5. Commit all the shares : h(e)
0 = H1(salt, e, cmt

(e)
1 , ..., cmt

(e)
N )

6. Compute h1 = H2

(
salt,m, h

(1)
0 , ..., h

(τ)
0

)

Step 2: First Challenge

7. Extend hash
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ]

← PRG(h1) where
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ]

∈ (Fn
qm·η × Fqm·η )τ

Step 3: First Response

8. For each iteration e ∈ [1, τ ] :

For each each dimension k ∈ [1, D] :

- Execute the algorithm in Fig. 4 to obtain Jα(e)K, Jv(e)K and H
(e)
k

9. Compute h2 = H4(m, pk, salt, h1, (H
(e)
1 , ..., H

(e)
D )e∈[1,τ])

Step 4: Second Challenge

10. Extend hash (i∗(e))e∈[1,τ] ← PRG(h2) with i∗(e) ∈ [1, N ]

Step 5: Second Response

11.For each iteration e ∈ [1, τ ]:

Compute rsp(e) =
(
(statej)j ̸=i∗ , cmt

i∗(e) , Jα
(e)K

i∗(e)

)
12. Output σ =

(
salt, h1, h2, (rsp

(e))e∈[1,τ]

)
Fig. 6: Rank-SD Signature Scheme based on Hypercube MPCitH - Signature Algorithm
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Inputs

- Public key pk = (H,y) with H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

such that y = Hx

- Message m ∈ {0, 1}∗

- Signature σ = (salt, h1, h2, (rsp
(e))e∈[1,τ]), where rsp(e) =

(
(statej)j ̸=i∗ , cmt

i∗(e) , Jα
(e)K

i∗(e)

)

Step 1: Parse signature

1. Sample
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ]

$,h1←− (Fn
qm·η × Fqm·η )τ

2. Sample i∗(e)
$,h2←− [1, N ]

3. Read (state
(e)
i )i∈[1,N]) for each iteration e ∈ [1, τ ].

Step 2: Recompute h1

4. For each iteration e ∈ [1, τ ]:

For each i ̸= i∗(e) :

cmt
(e)

i∗ = H0(salt, e, state
(e)

i∗ )

h
(e)
0 = H1

(
salt, e, cmt

(e)
1 , ..., cmt

(e)
N

)
5. Compute h̄1 = H2

(
m, salt, h

(1)
0 , ..., h

(τ)
0

)

Step 3: Recompute h2

6. For each iteration e ∈ [1, τ ]:

- Simulate MPC protocol Π on main parties

- For each dimension k ∈ [1, D] :

Run the algorithm in Fig. 5 to get ¯
H

(e)
k

7. Compute h̄2 = H4

(
m, pk, salt, h̄1,

(
H

(e)
1 , ..., H

(e)
D

)
e∈[1,τ]

)

Step 4: Verify signature

8. Return (h̄1 = h1) ∧ (h̄2 = h2)

Fig. 7: Rank-SD based signature scheme - Verification algorithm

3.3 Conversion to zero-knowledge proof using low-threshold linear secret sharing

3.3.1 Application of the MPCitH paradigm We explain below that the MPC-in-the-Head paradigm
is a framework allowing to convert an MPC protocol with threshold linear secret sharing to a zero-knowledge
proof. Like in the subsection 3.2, the explanations given below are correct only within the framework of the
restricted model [FR22]. The principle of the process is that the prover emulates in his head the parties,
and the verifier asks to the prover to reveal the views of ℓ parties out of N (which includes shares and
communications with other parties). It ensures the zero-knowledge property as long as the underlying MPC
protocol relies on a (ℓ+ 1, N)-threshold secret sharing.

To build such a proof, the prover begins by computing a sharing JωK of the witness ω, solution of the Rank
Syndrome-Decoding instance. The prover then simulates all the parties of the protocol until the computation
of Jf(ω)K (which should correspond to a sharing of ACCEPT, since the prover is supposed to be honest),
and sends a commitment of each party’s view to show good faith. The verifier then chooses ℓ parties and
asks to the prover to reveal their views. The verifier checks the computation of the their commitments. Since
only ℓ parties have been opened, the revealed views give no information about ω.

A naive way for the prover to execute the protocol would be to simulate all parties, but each party
computes LSSS sharing of all involved elements. It implies that for each x in these elements, a sharing
JxK = (JxK1, ..., JxKN ) contains redundancy. One deduces that it is necessary to perform the calculations of
the associated MPC protocol for only a subset S of ℓ+1 out of N parties, and commit them will be enough
to ensure the soundness of the proof. The threshold protocol therefore ensures better performances for the
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simulation of the MPC protocol than the additive case (especially when ℓ is small compared to n), since it
is not necessary to compute all the parties.

Remark: This advantage on the full execution of the signing algorithm is partially mitigated by the perfor-
mances of the symmetric cryptography primitives involved in the protocol. Threshold-MPCitH has better
performances on the pseudo-random generation, but the commitment is faster (for the prover) with additive
sharing. See [FR22] for more details.

The protocol resulting from these considerations can be found in figure 8.

Public data : An instance of a Rank-SD problem : H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

The prover wants to convince the verifier that he knows the solution x ∈ Fn
qm of the instance, i.e. such that y = Hx

Step 1: Commitment

1. The prover builds a set of shares into a (ℓ+ 1, N)−threshold secret sharing of xB . The prover also build shares of the annihilator

polynomial L =
∏

u∈U (X − u) = Xqr +
∑r−1

i=0 βiX
qi , a vector a uniformly sampled from Fr

qm·η , and c = −⟨β,a⟩. Each party takes
one share of the previous elements.
For each i ∈ [1, N ] : statei = (JxBKi, JβKi, JaKi, JcKi)

2. The prover computes the commitments : cmti = Com
(
statei, ρi

)
, where ρi is a random tape sampled from {0, 1}λ for each i ∈ [1, N ].

3. The prover computes and sends the Merkle tree root : h0 = Merkle(cmt1, · · · , cmtN )

Step 2: First Challenge

4. The verifier sends
(
(γj)j∈[1,n], ϵ

)
∈ Fn

qm·η × Fqm·η to the prover.

Step 3: First Response

5. The prover chooses a public subset S of parties such that |S| = ℓ + 1:

For each party i ∈ S :

- Compute JxAKi = y −H′JxBKi and JxKi = (JxAKi || JxBKi)

- Compute JzK = −
∑n

j=1 γj

(
JxjKq

r
− JxjK

)
.

- Compute for each k from 1 to r − 1 : JωkK =
∑n

j=1 γj

(
JxjKq

k
− JxjK

)
- Compute JαKi = ϵ · JwKi + JaKi and the parties reveals α

- Compute JvKi = ϵ · JzKi − ⟨α, JβKi⟩ − JcKi

6. The prover commits the values : h1 = H ((JαKi, JvKi)i∈S)

Step 4: Second Challenge

7. The verifier sends a subset I ⊂ [1, N ] of parties such that |I| = ℓ to the prover

Step 5: Second Response

8. The prover sends (statei, ρi)i∈I , and the authentication path to these commitments, to allow the verifier to rebuild the Merkle
tree. The verifier deduces a value h̃0.
9. The prover chooses a public party i∗ ∈ S\I, and sends JαKi∗ to allow the verifier to recover JαK = ReconstructI

⋃
{i∗}(JαKI ⋃{i∗})

10. The verifier sets JvKi∗ such that v = 0.

11. The computes h̃1 = H((JαKi, JvKi)i∈S).

12. The verifier outputs ACCEPT if (h̃0, h̃1) = (h0, h1), REJECT otherwise.

Fig. 8: Zero-knowledge protocol, deduced from the MPC protocol with threshold

3.3.2 Digital signature scheme from Rank-SD problem In this section, one applies the Fiat-Shamir
transformation to the previous interactive zero-knowledge proof in order to obtain a signature scheme. One
transforms the zero-knowledge proof into a non-interactive protocol by deterministically sampling challenges
thanks to a hash function. It must be run several times to achieve the desired level of security.

The resulting signature scheme is depicted in the figure 9.
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Inputs

- Secret key sk = (x) with x = (xA ||xB) ∈ Fn
qm such that wR

(
x
)
= r

- Public key pk = (H,y) with H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

such that y = Hx

- Message m ∈ {0, 1}∗

Step 1: Commitment

1. Sample a random salt value salt
$←− {0, 1}2λ

2. Compute β = (βk)k∈[1,r−1] ∈ Fr
qm the coefficients of the annihilator q-polynomial L(X) associated to x such that L(X) =∏

u∈U (X − u) = Xqr +
∑r−1

k=1 βk(X
qk −X) and ∀j ∈ [1, n], L(xj) = 0

3. For each iteration e ∈ [1, τ ]:

⋄ Sample a(e) $←− Fr
qm·η and compute c(e) such that c(e) ∈ Fqm·η and c(e) = −⟨β,a(e)⟩

⋄ For each party i ∈ [1, N ]:

- Compute the (ℓ + 1, N)-threshold LSSS Jx(e)
B K, Jβ(e)K, Ja(e)K, Jc(e)K of xB ,β,a(e) and c(e)

- Compute state
(e)
i = (Jx(e)

B Ki, Jβ(e)Ki, Ja(e)Ki, Jc(e)Ki) and cmt
(e)
i = H0(salt, e, i, state

(e)
i )

⋄ Compute the Merkle tree root h
(e)
0 = Merkle(cmt

(e)
1 , · · · , cmt

(e)
N )

4. Compute h1 = H1(m, pk, salt, (h
(e)
0 )e∈[1,τ])

Step 2: First Challenge

5. Extend hash
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ]

← PRG(h1) where
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ]

∈ (Fn
qm·η × Fqm·η )τ

Step 3: First Response

6. For each iteration e ∈ [1, τ ]:

⋄ For each party i ∈ S with S a public subset of parties such that |S| = ℓ + 1:

- Compute Jx(e)
A Ki = y −H′Jx(e)

B Ki and Jx(e)Ki = (Jx(e)
A Ki || Jx(e)

B Ki)

- Compute Jz(e)Ki = −
∑n

j=1 γj

(
Jx(e)

j Kq
r

i − Jx(e)
j Ki

)
and ∀k ∈ [1, r − 1], Jw(e)

k Ki =
∑n

j=1

(
γjJx(e)

j Kq
k

i − Jx(e)
j Ki

)
- Compute Jα(e)Ki = ϵ(e) · Jw(e)Ki + Ja(e)Ki

- Compute Jv(e)Ki = ϵ(e) · Jz(e)Ki − ⟨α(e), Jβ(e)Ki⟩ − Jc(e)Ki

7. Compute h2 = H2(m, pk, salt, h1, (Jα(e)Ki, Jv(e)Ki)i∈S,e∈[1,τ])

Step 4: Second Challenge

8. Extend hash (I(e))e∈[1,τ] ← PRG(h2) where ({I ⊂ N | |I| = ℓ})τ

Step 5: Second Response

9. For each iteration e ∈ [1, τ ]:

⋄ Choose deterministically a party i∗(e) ∈ S \ I(e) and compute Jα(e)K
i∗(e)

⋄ Compute the authentication path auth(e) associated to root h
(e)
0 and (cmt

(e)
i )

i∈I(e)

⋄ Compute rsp(e) =
(
(Jx(e)

B Ki, Jβ(e)Ki, Ja(e)Ki, Jc(e)Ki)i∈I(e)
, auth(e), Jα(e)K

i∗(e)
)

10. Compute σ = (salt, h1, h2, (rsp
(e))e∈[1,τ])

Fig. 9: Rank based signature scheme with threshold - Signing algorithm

An entity that wants to verify the signature must then recompute the challenges using the hashes h1 and h2

provided in the signature. For each iteration e ∈ [1, τ ], the prover sends rsp(e), which includes all the shares
belonging to the parties in I, and Jα(e)Ki∗(e) which allows to recompute α(e). As a result, this information is
sufficient for the verifier to check the hashes. Since hash functions are assumed to be collision free, checking
equality between the hashes is sufficient to assume the validity of the signature.

The verification algorithm is formally detailed in the figure 10.

As for the additive sharing case, we will prove in the section 5.2 that this scheme guarantees good security
against EUF-CMA attack.
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Inputs

- Public key pk = (H,y) with H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

such that y = Hx

- Message m ∈ {0, 1}∗

- Signature σ = (salt, h1, h2, ( ¯rsp(e))e∈[1,τ])

Step 1: Parse signature

1. Sample
(
(γ

(e)
j )j∈[1,n], ϵ

(e)
)
e∈[1,τ]

$,h1←− (Fn
qm·η × Fqm·η )τ

2. Sample (I(e))e∈[1,τ]

$,h2←− ({I ⊂ N | |I| = ℓ})τ

3. For each iteration e ∈ [1, τ ]:

⋄ Choose deterministically i∗(e) from S \ I(e)

⋄ Parse ¯rsp(e) :=
(
(Jx̄(e)

B Ki, Jβ̄(e)Ki, Jā(e)Ki, Jc̄(e)Ki)i∈Ī(e)
, ¯auth(e), Jᾱ(e)K

i∗(e)
)

Step 1: Recompute h1

4. For each iteration e ∈ [1, τ ]:

⋄ For each party i ∈ I(e):

- Compute ¯state
(e)
i = (Jx̄(e)

B Ki, Jβ̄(e)Ki, Jā(e)Ki, Jc̄(e)Ki) and ¯cmt
(e)
i = H0(salt, e, i, ¯state

(e)
i )

⋄ Compute the Merkle tree root h̄
(e)
0 from ( ¯cmt

(e)
i )

i∈I(e)
and ¯auth(e)

5. Compute h̄1 = H1(m, pk, salt, (h̄
(e)
0 )e∈[1,τ])

Step 2: Recompute h2

6. For each iteration e ∈ [1, τ ]:

⋄ For each party i ∈ I(e):

- Compute Jx̄(e)
A Ki = y −H′Jx̄(e)

B Ki and Jx̄(e)Ki = (Jx̄(e)
A Ki || Jx̄(e)

B Ki)

- Compute Jz̄(e)Ki = −
∑n

j=1 γj

(
Jx̄(e)

j Kq
r

i − Jx̄(e)
j Ki

)
and ∀k ∈ [1, r − 1], Jw̄(e)

k Ki =
∑n

j=1 γj

(
Jx̄(e)

j Kq
k

i − Jx̄(e)
j Ki

)
- Compute Jᾱ(e)Ki = ϵ(e) · Jw̄(e)Ki + Jā(e)Ki

⋄ Reconstruct ᾱ(e) and (Jᾱ(e)Ki)i∈S from (Jᾱ(e)Ki)i∈I(e)
and Jᾱ(e)K

i∗(e)

7. For each iteration e ∈ [1, τ ]:

⋄ For each party i ∈ I(e):

- Compute Jv̄(e)Ki = ϵ(e) · Jz̄(e)Ki − ⟨ᾱ(e), Jβ̄(e)Ki⟩ − Jc̄(e)Ki

⋄ Reconstruct (Jv̄(e)Ki)i∈S from (Jv̄(e)Ki)i∈I(e)
and v̄(e) = 0

8. Compute h̄2 = H2(m, pk, salt, h̄1, (Jᾱ(e)Ki, Jv̄(e)Ki)i∈S,e∈[1,τ])

Step 5: Verify signature

9. Return (h̄1 = h1) ∧ (h̄2 = h2)

Fig. 10: Rank based signature scheme with threshold - Verification algorithm

3.3.3 Using Shamir secret sharing In practice, we use the (ℓ + 1)-threshold Shamir’s secret sharing
scheme as LSSS. Thus the shares of a secret value s ∈ Fq are defined as JsKi = P (ei), where P is a polynomial
whose constant term is equal to s, and e1, ..., eN ∈ Fq are public non zero distinct points. However, since
each share corresponds to the evaluation of a polynomial into a distinct point of Fq, we get that the number
N of parties is upper bounded by q. To have interesting performances, it means that q must be large (for
example, q = 256).

It is possible to mitigate this constraint. Let us assume that we want to share values directly from Fqm

(instead of Fq). In that case, e1, . . . , eN would belong to Fqm and we would have N ≤ qm instead of N ≤ q.
The only issue comes from the usage of the Frobenius endormorphism which is Fq-linear and not Fqm-linear.
We can remark that, from a sharing JsK of s, each party i can obtain a sharing of sq by simply computing
JsKqi . However, the evaluation points of the obtained sharing and the encoding polynomial changed: they
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become eq1, ..., e
q
N . Indeed,

P (X)q =

(
s+

ℓ∑
i=1

riX
i

)q

= sq +

ℓ∑
i=1

rqi (X
q)i

= P̃ (Xq) where P̃ = sq +

ℓ∑
i=1

rqiX
i

One can add two shares if and only if they have the same evaluation points. The optimized MPC protocol
described used in figure 9 does not satisfy this property: we can not set the input sharings such that we have
the guarantee that addition will be performed only on sharings with the same evaluation points. However, if
we want to have a scheme relying on Threshold-MPCitH with a small q (for example, with q = 2), we can
use the MPC protocol proposed in [Fen22]. The latter satisfies the desired properties (see [Fen22, Appendix
A] for details).
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4 Parameter sets

4.1 Choice of parameters

The problem Rank Syndrome Decoding is parameterized by the following parameters:

– q ∈ N - the order of the base field on which the problem is based

– m ∈ N - the degree of the considered extension of the above field

– n ∈ N - the length of the code C

– k ∈ N - the dimension of the code

– r ∈ N - the rank of the vector x

The other parameters of the scheme are:

– N ∈ N - the number of parties simulated in the MPC protocol

– τ ∈ N - the number of rounds in the signature

– η ∈ N - allowing to build Fqm·η

In order to choose the parameters, we need to consider:

– The security of the Rank-SD instance, i.e, the complexity of the attacks on the chosen parameters.

– The security of the signature scheme, i.e, the cost of a forgery.

– The size of the signature

Since the protocol is more efficient as N grows (up to some point), we need to take a larger value of q in
the threshold variant. To have a threshold scheme with N = 256 shares, we must take q = 256 since we
necessarily have N ≤ q (in the Shamir Secret Sharing scheme, we can’t have more shares than the number
of elements in the base field; this means we can’t have more parties than the cardinal of Fq in our case).

In additive sharing, we take the value of q = 2, since it is the most efficient and we have no constraints. We
propose here two versions of the signature scheme with different values for N : we set N = 256 for a short
version of the signature, and N = 32 for a fast one.

The choice of (q,m, n, k, r) was then made in order to achieve the target security in regards to the attacks
we present in subsection 6.2.

As for the choice of τ and η, we need to choose them such that our signature scheme resists to the forgery
attack described by [KZ20], which we explain in subsection 6.1. Because of this, in the additive protocol
optimized with the hypercube technique, we need to set τ such that:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′

(
τ
i

)
pi(1− p)τ−i

+Nτ−τ ′

}
(2)

is higher than 2λ, with p = 2
qmη − 1

q2mη . The value depends on τ and η, we then need to take them such that
the signature is safe, and as small as possible, given the parameters of the Rank-SD instance.

In the case of the threshold protocol, this formula changes:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′

(
τ
i

)
pi(1− p)τ−i

+

(
N

ℓ

)τ−τ ′}
(3)

with p = ( 2
qmη − 1

q2mη ) ·
(

N
ℓ+1

)
, see [FR22] for details.

In any case, as long as the cost of the forgery is high enough, we can just take the parameters for which the
size of signature is the smallest.

We propose the following parameters for a security of λ = 128 bits:
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– For the additive scheme: (q,m, n, k, r) = (2, 31, 33, 15, 10)

– For the threshold scheme with ℓ = 3: (q,m, n, k, r) = (256, 11, 12, 5, 5)

– For the threshold scheme with ℓ = 3 with small q: (q,m, n, k, r) = (2, 31, 29, 14, 10)

4.2 Signature and key sizes

4.2.1 Additive MPC We must send for each e ∈ [1, τ ] the following elements: cmti∗ ∈ {0, 1}2λ and
(state

(e)
i )i ̸=i∗ (which consists in seeds in {0, 1}2λ or the following elements for one of them: JxBK ∈ Fk

qm ,
JαK ∈ Fr−1

qm·η , JβK ∈ Fr−1
qm , JcK ∈ Fqm·η ); and (salt|h1|h2) ∈ {0, 1}6λ.

Note also that for each e ∈ [1, τ ], we do not send all the N − 1 seeds (state
(e)
i ), since we use a tree-PRG

(noted TPRG in the figures) to generate them: starting from the root seed, each seed is recursively expanded
in two child seeds until we obtain N seeds. We obtain a tree of depth log2 N , and we only reveal the log2 N
sibling nodes of the root-leaf path of the hidden leaf i∗ to reveal all the leaves except i∗.

We can now compute the communication cost of the protocol (in bits):

|σ| = 6λ︸︷︷︸
salt, h1, h2

+ τ ·

( (r − 1)mη︸ ︷︷ ︸
α

+ km︸︷︷︸
xB

+(r − 1)m︸ ︷︷ ︸
β

+ mη︸︷︷︸
c

)
· log2 q + 2λ+ (log2 N)λ︸ ︷︷ ︸

additive MPCitH


Parameters are chosen such the Rank-SD problem is secure against the existing attacks (see section 6.2).
We recall that the security levels of the signature I, III and V correspond respectively to the security of
AES-128, AES-192 and AES-256. Tables 1 and 2 give the theoretical signature size for different set of secure
parameters in the case of additive shares:

NIST security level q m n k r N η τ pk σ

1 2 31 33 15 10 256 1 20 0.1 kB 5.9 kB

3 2 37 41 18 13 256 1 29 0.1 kB 12.9 kB

5 2 43 47 18 17 256 1 38 0.1 kB 22.8 kB

Table 1: Parameters for additive MPC on hypercube, short signature

NIST security level q m n k r N η τ pk σ

1 2 31 33 15 10 32 1 30 0.1 kB 7.4 kB

3 2 37 41 18 13 32 1 44 0.1 kB 16.4 kB

5 2 43 47 18 17 32 1 58 0.1 kB 29.1 kB

Table 2: Parameters for additive MPC on hypercube, fast signature

4.2.2 Threshold MPC In the threshold case, the process is similar to the additive one above: we
must send for each e ∈ [1, τ ] the following elements: h ∈ {0, 1}2λ (an hash used) and ℓ times all the
elements(state(e)i )i ̸=i∗ ; and one time (salt|h1|h2) ∈ {0, 1}6λ.

The signature size of the scheme is given by

|σ| ≤ 6λ︸︷︷︸
salt,h1,h2

+ τ ·
(
ℓ ·
(
km︸︷︷︸
xB

+(r − 1)mη︸ ︷︷ ︸
α

+(r − 1)m︸ ︷︷ ︸
β

+ rmη︸︷︷︸
a and c

)
· log2(q) + 2λ · ℓ log2(

N

ℓ
)︸ ︷︷ ︸

Threshold MPCitH

)
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Let us recall that the scheme requires that N ≤ q. If we want to use a small q, we need to replace our MPC
protocol with the one described in [Fen22] (see section 3.3.3 for details). In that case, the signature size is
given by

|σ| ≤ 6λ︸︷︷︸
salt,h1,h2

+ τ ·
(
ℓ ·
(
km︸︷︷︸
xB

+ rmη︸︷︷︸
α

+(r − 1)m︸ ︷︷ ︸
β

+ rmη︸︷︷︸
a and c

)
· log2(q) + 2λ · ℓ log2(

N

ℓ
)︸ ︷︷ ︸

Threshold MPCitH

)

Tables 3 and 4 give the theoretical signature size for different set of secure parameters in the case of threshold
shares for ℓ = 3 and ℓ = 1:

NIST security level q m n k r N η τ pk σ

1 256 11 12 5 5 256 2 6 0.1 kB 8.2 kB

3 256 13 17 7 6 256 1 11 0.1 kB 18.3 kB

5 256 17 17 7 7 256 3 14 0.1 kB 32.5 kB

Table 3: Parameters for threshold with ℓ = 3, q = 256

NIST security level q m n k r N η τ pk σ

1 2 31 33 15 10 256 2 18 0.1 kB 9.3 kB

3 2 37 41 18 13 256 2 27 0.1 kB 21.4 kB

5 2 43 47 18 17 256 2 35 0.1 kB 34.8 kB

Table 4: Parameters for threshold with ℓ = 1, q = 2

5 Security analysis

5.1 Security proof for the proof of knowledge

5.1.1 Additive MPC We prove here that our protocol fulfils the three required properties: completeness,
soundness and zero-knowledge. The proofs of this section are close to those in [AMGH+22] (which are
themselves close to [FJR22]) due to the same structure of hypercube used, as only the MPC protocol
changed.

We firstly prove that an honest prover is always accepted. Conversely, a prover who commits a bad witness in
the first step of the protocol has a probability lower than ϵ =

(
p+ (1− p) 1

N

)
of being accepted. Consequently,

a prover that has a higher probability of acceptance knows the secret.

Theorem 1. The protocol in Fig. 3 is perfectly complete. Namely, a prover who knows x and performs the
protocol correctly will be accepted by a verifier with probability 1.

Proof. By construction, if the prover has knowledge of a solution of the Rank-SD instance, he will always
be able to execute the protocol correctly.

Theorem 2. If an efficient prover P̃ with knowledge of only public data (H,y) can convince a verifier V
with probability:

ϵ̃ = Pr
(
⟨P̃,V⟩ → ACCEPT

)
> ϵ = p+ (1− p)

1

N
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then there exists an extraction function E that produces a commitment collision, or a good witness x′ solution
of the Rank-SD instance, by making an average number of calls to P̃ upper bounded by:

4

ϵ̃− ϵ

(
1 +

2ϵ̃ ln 2

ϵ̃− ϵ

)
Proof. The proof is similar to that of [AMGH+22]. We first need to establish that the probability for the
malicious prover (who has no knowledge of the solution of the Rank-SD instance used) to cheat is at most
ϵ = 1

N + (1− 1
N ) · p.

There are two situations where a malicious prover can be accepted by the verifier:

– He obtains the value v = 0 when executing the MPC protocol thanks to a false positive.

– The verifier believes that the value obtained v is 0.

The first case occurs with probability p = 2
qmη − 1

q2mη , as false positive rate of the protocol Πη.

In the second case, the malicious prover needs to alter the communications in order to fool the verifier.
Among the N shares, only the share i∗ will not be revealed by the prover. This means that, if he cheats on
more than one share, the verifier will notice the cheating, and thus rejects the proof. However, if he cheats
on zero share, he will be rejected as well since the value v will not be 0 since the malicious prover does not
have a good witness.

This means the malicious prover can only cheat on one share exactly. However, cheating on one share s
means that this will show on one main share of all the D dimensions, as the main shares are the sum of
leaves that have the same index ik along the current dimension. This means that the cheating is not detected
if and only if the share the prover cheated on is i∗, since there exists a bijection between leaves and the set
of their associated main parties. This happens with probability 1

N (as the prover does not know the value
of i∗ before cheating). No other cheating is possible, because all leaf parties except i∗ are revealed. Remark
that cheating on the main parties give the same probability of success, since the prover should cheat for each
dimension on the main party associated to the unrevealed leaf i∗.

Thus, the probability for the malicious prover to fool the verifier is at most: p+(1−p) · 1
N = 1

N +(1− 1
N ) ·p.

We then need to show that the soundness is exactly this value, which we will do in what follows:
let T1 and T2 two transcripts with the same commitments, i.e, the same h0 = H(cmt1, . . . , cmtN ) , but the
second challenges i∗1 (for T1) and i∗2 (for T2) differ.

Then, we have two possibilities:

– JxBK, JβK, JaK and JcK differ in the two transcripts, and the malicious prover found a collision in the
commitment hash.

– the openings of the commitments are equal, and thus the shares JxBK, JβK, JaK and JcK are equal in the
transcripts.

We will only consider the second case, as we suppose that we use secure hash functions and secure commitment
schemes.

Then, since i∗1 and i∗2 are different challenges and the commitments are the same, it is possible to recover
the witness. We will then show that this means we can build an extractor function in order to obtain a good
witness.

x is called a good witness if it is solution to the Rank-SD instance defined by public data, i.e. Hx = y and
WR(x) ≤ r. Let Rh the random variable associated to the randomness in initial commitment, and rh is the
value it takes.

For a malicious prover P̃ to be able to get these two transcripts, he does the following:

– Run the protocol with randomness rh with the verifier until T1 is found, i.e, T1 is the first accepted
transcript found by P̃. We note i∗1 the leaf challenge obtained.
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– Then, using the same randomness rh that was used, i.e, building the same commitments, P̃ repeats the
process, until he finds another accepted transcript, T2, for which the leaf challenge, i∗2, is different than
i∗1.

– He then recovers the witness. If it is a bad witness, he repeats from the beginning.

In order to establish the soundness of the protocol, we need to estimate the number of times a malicious
prover needs to repeat the authentication protocol in order to get the good witness x.
Let δ ∈]0, 1[, and ϵ̃ such that (1 − δ) · ϵ̃ > ϵ. We will define the randomness rh to be a good randomness if
Pr(SuccP̃ |rh) > (1− δ) · ϵ̃.

By the Splitting Lemma, we have that Pr(rh good|SuccP̃) ≥ δ. This means that after 1
δ accepted transcripts,

we have good odds to obtain a good randomness. Furthermore, we know that if the malicious prover uses a
bad witness, his probability to cheat is bounded from above by ϵ. Since the probability of success is greater
than ϵ, this means that a good witness has been used (when rh is good).

To continue this proof, we will look at the probability to have, given an accepted transcript T1, a second
accepted transcript, T2, with a challenge different than the one in T1. This means we are looking to bound
from below the probability:

Pr(SuccP̃ ∩(i
∗
1 ̸= i∗2)|rh good)

Trivially, we know that this probability is equal to the probability of success knowing that rh is good, minus
the probability of success with i∗1 = i∗2 knowing rh is good. This means:

Pr(SuccP̃ ∩(i∗1 ̸= i∗2)|rh good) = Pr(SuccP̃ |rh good)− Pr(SuccP̃ ∩(i∗1 = i∗2)|rh good)

≥ Pr(SuccP̃ |rh good)− 1

N

≥ (1− δ)ϵ̃− 1

N

≥ (1− δ)ϵ̃− ϵ (since ϵ ≥ 1

N
trivially)

Now that we have this lower bound, we want to estimate the number of time one has to repeat the protocol
to find T2. For that, we take the opposite probability, i.e, 1 − Pr(SuccessP̃ ∩(i∗1 ̸= i∗2)|rh good), which is
lower bounded by 1− ((1− δ)ϵ̃− ϵ). We now want a probability of 1

2 at least of success after L tries of the
authentication protocol. This means then that we want:(

1− Pr(SuccessP̃ ∩(i
∗
1 ̸= i∗2)|rh good)

)L
<

1

2
L · ln(1− ((1− δ)ϵ̃− ϵ)) < − ln(2)

L > − ln(2)

ln(1− ((1− δ)ϵ̃− ϵ))

One obtains the following majoration for the number of calls to P̃:

L >
ln(2)

ln( 1
1−((1−δ)ϵ̃−ϵ) )

≈ ln(2)

(1− δ)ϵ̃− ϵ

This means that, when repeating the protocol L times, the probability to get the second transcript is higher
than 1

2 .

Finally, we can look at the number of protocol repetitions that have to be done. To quickly remind the steps
of the extraction:

– P̃ repeats the authentication protocol until he finds an accepted transcript T1, where the commitments
are generated by rh, and with second challenge i∗1.

– When T1 is found, repeat the protocol with the same value rh, L times. After that, P̃ has more than 1
2

chance of being successful. If he is not, he repeats from the first step of the procedure.
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We will note E(P̃) the number of repetitions P̃ has to make. After L calls (to find T2), if rh is good (which
happens with probability δ), we have 1

2 chance of not finding T2. However, if rh is not good (with probability
1− δ), then we can consider that T2 is never found.

Thus, Pr(no T2|SuccP̃) =
δ
2 + (1 − δ) = 1 − δ

2 . If that happens, then, P̃ has to return to the first step, i.e,
find T1 again. This means:

E(P̃) ≤ 1 +
(
(1− Pr(SuccP̃))E(P̃)

)
+ Pr(SuccP̃)

(
L+ (1− δ

2
)E(P̃)

)
Obviously, P̃ needs to run at least once. Then, we need to add to that the number of times expected before
finding T1, and then, the number of times expected before finding T2.
Since Pr(SuccP̃) = ϵ̃ (by assumption), we can replace, and simplify the expression. We find then:

E(P̃) ≤ 1 +
(
(1− ϵ̃ · E(P̃)

)
+ ϵ̃ ·

(
L+ (1− δ

2
) · E(P̃)

)
E(P̃) ≤ 1 + E(P̃)− ϵ̃ · E(P̃) + ϵ̃ · L+ ϵ̃ · E(P̃)− ϵ̃ · δ

2
· E(P̃)

ϵ̃ · δ
2
· E(P̃) ≤ 1 + ϵ̃ · L

E(P̃) ≤ 2

ϵ̃ · δ

(
1 + ϵ̃ · L

)
=

2

ϵ̃ · δ

(
1 + ϵ̃ · ln(2)

(1− δ)ϵ̃− ϵ

)
Since this equality holds for any δ ∈]0, 1[, we can take δ such that (1− δ)ϵ̃ = 1

2 (ϵ̃+ ϵ), and thus, we obtain
the result:

E(P̃) ≤ 4

ϵ̃− ϵ
·
(
1 + 2ϵ̃ · ln(2)

ϵ̃− ϵ

)
This means we found an upper bound on the number of iterations P̃ has to do before being able to retrieve
a good witness, in the case where the probability to cheat was higher than ϵ. This proves that ϵ is exactly
the value 1

N + (1− 1
N ) · p.

We now have to prove zero-knowledge property by building a simulator which outputs indistinguishable
transcripts with the distribution of transcripts from honest executions of the protocol.

The main intuition is that if the prover knows the challenge before committing the initial shares, then
he knows for which party to cheat. We consequently build an HVZK simulator which firstly generate the
challenge to build valid transcriptions of the protocol.

Theorem 3. If the algorithm PRG is a secure pseudo-random generator and the commitment Com is hiding,
then the algorithm 11 is Honest-Verifier Zero Knowledge.

Proof. Consider a simulator, described in Fig. 11, which produces the transcript responses (h0, ch1, h1, ch2, rsp).
We demonstrate that this simulator produces indistinguishable transcripts from the real distribution (the
one that we would obtain if it were generated by an honest prover who knows x) by considering a succession
of simulators: we begin by a simulator which produces true transcripts, and and change it gradually until
arriving the following simulator. We explains why the distribution of transcripts is always the same at each
step.

– Simulator 0 (real world): It correctly executes the algorithm 3, hence its output is the correct distri-
bution.

– Simulator 1: Same as the Simulator 0, but starts by sampling the random challenges, and then uses
true randomness instead of seed-derived randomness for leaf i∗. If i∗ = N , the leafs JxBKN , JβKN , JcKN
are computed as in the MPC protocol.
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Public data : An instance of a Rank-SD problem : H = (I H′) ∈ F(n−k)×n
qm

and y ∈ Fn−k
qm

Step 1: Sample challenges

1. Sample challenges :

- First challenge : ch1 =
(
(γj)j∈[1,n], ϵ

) $←− Fn
qm·η × Fqm·η

- Second challenge : ch2 = i∗
$←− [1, N ]

Step 2: Compute shares and their commitments

2. Sample a seed for pseudo-random generator : seed $←− {0, 1}λ

3. Expand root seed recursively using TreePRG to obtain N leafs and seeds (seedi, ρi).

4. For each i ∈ [1, N ]\{i∗} :

- Sample JaKi
$,seedi←− Fr−1

qm·η

If i ̸= N

- Sample (JxBKi, JβKi, JcKi)
$,seedi←− TPRG

- statei = seedi

- Else:

- Sample (JxBKN , JβKN , JcKN )
$←− Fk

qm × Fr
qm × Fqm·η

- auxN = (JxBKN , JβKN , JcKN )

- stateN = seedN || auxN
- Simulate the computation of the party i to get JαKi and JvKi.

5. For the party i∗:

- JαKi∗
$←− Fr−1

qm·η

- JvKi∗ = −
∑

i̸=i∗JvKi

6. Compute the commitment: cmti∗ = Com
(
statei∗ , ρi∗

)
.

7. Commit the full hypercube: h0 = Com
(
cmt1, ..., cmtN

)
.

8. For each main party p ∈ [1, 2] : compute JαKp and JvKp

9. For each dimension k ∈ [1, D] : compute Hk = H(JαK, JvK)

10. Compute h1 = H(H1, ..., HD)

Step 3 : Output transcript

11. The prover outputs the transcript (h0, ch1, rsp1, ch2, rsp2), where rsp1 = h1 and rsp2 =
(
cmti∗ , JαKi∗ , (statej , ρj)j ̸=i∗

)
.

Fig. 11: HVZK simulator for zero-knowledge proof optimized with the hypercube technique

The pseudo-random generator is supposed to be (t, ϵPRG)-secure, its outputs are indistinguishable from
the uniform distribution. Since the principal parts correspond to the sum of a certain number of leaves
whose distributions are indistinguishable from that of the real world, their distribution is also indistin-
guishable.

– Simulator 2: Replace the leafs JxBKN , JβKN , JcKN in Simulator 1 by uniform sampled values. Compute
JvKi∗ = −

∑
i ̸=i∗JvKi. Note that this simulator becomes independent of the secret witness xB .

If i∗ = N , it only impacts the shares JαKi∗ and JvKi∗ . Note that this change does not alter the uniform
distribution of these values. It does not alter the distribution of any other leaf.

If i∗ ̸= N , it only impacts auxN = (JxBKN , JβKN , JcKN ) in the simulated response and the values computed
from them in the MPC protocol. It does not alters the distribution of other leaves. We observe that the
shares in auxN are calculated by adding a randomness value from each seed of party i ̸= i∗, which amounts
to adding a uniform random value from seedi∗ . Since this distribution was uniform too in Simulator
1, the output distributions are the same. Remember that this does not change the distributions of the
main parts for the same reasons as before.
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– Simulator 3: Rather than computing the value of JαKi∗ as in the MPC protocol, Simulator 3 sam-
ples it uniformly at random from Fr−1

qm·η . As in the previous simulator, it does not change their output
distribution.

As such, the output of the simulator is indistinguishable from the real distribution.

5.1.2 MPC with threshold We discuss here the security properties of the threshold protocol. The proofs
will only be sketched, as they are very similar to those of the hypercube protocol.

Theorem 4. The protocol in Fig. 8 is perfectly complete. Namely, a prover who knows x and performs the
protocol correctly will be accepted by a verifier with probability 1.

Proof. Same trivial justification as in the previous case of the hypercube.

Theorem 5. Suppose that there is an efficient prover P̃ that on input (H,y) convinces an honest verifier
V to accept with probability

ϵ̃ = Pr
(
⟨P̃,V⟩ → ACCEPT

)
> ϵ =

1(
ℓ
N

) + p · ℓ · (N − ℓ)

ℓ+ 1

then there exists an extraction algorithm E that produces a commitment collision, or a good witness x′

solution of the Rank-SD instance, by making an average number of calls to P̃ bounded from above:

4

ϵ̃− ε

(
1 +

8 · (N − ℓ)

ϵ̃− ϵ

)
Proof. For this proof, we refer to [FR22], which proves this theorem for any MPC protocol fitting this model.
Our threshold protocol is an exact application of this model. Hence, the proof of the above theorem is the
same as the proof in appendix D of [FR22].

Theorem 6. If the algorithm PRG is pseudo-random generator and the commitment Com is hiding, then
there exists an honest-Verifier Zero Knowledge algorithm.

The proof is similar to what is done in the case of the additive sharing, and holds by the t-privacy of the
MPC protocol, as well as the hiding property of the commitments. Moreover, a proof in the general case is
provided in [FR22, Appendix C]. Since we are in their model of MPCitH, the proof applies here as well.

5.2 Security proof for signature schemes

As in the previous subsection, the proofs are largely inspired by the work of [AMGH+22], which is largely
inspired by [FJR22]. The two proofs are very similar, and proceed in two main steps: we begin by explaining
how efficiently simulate a signature oracle to a CMA adversary using public key and the honest verifier
zero-knowledge simulator. We then show how such a RUF-CMA adversary can be used to extract a solution
to the Rank-SD instance.

5.2.1 Additive-RYDE We begin by computing the probability of an attack on the signature based in
the hypercube MPC.

Theorem 7. Let the signature be (t, ϵPRG)-secure and with adversary of advantage at most ϵRSD against
the underlying Rank-SD problem. Let H0, H1, H2, H3, and H4 be random oracles with output length 2λ bits.
If an adversary makes qi queries to Hi and qS queries to the signature oracle, the probability of such an
adversary producing an existential forgery under chosen message attack (EUF-CMA) is bounded from above
by:

Pr[Forge] ≤ 3 · (q + τ ·N · qS)2

2 · 2λ
+

qS · (qS + 5q)

2λ
] + ϵPRG + Pr[X + Y = τ ] + ϵRSD
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where q = max{q0, q1, q2, q3, q4}, τ is the number of rounds of the signature, p = 1
qmη +

(
1− 1

qmη

)
1

qmη

is the false positive rate of the underlying MPC protocol, X = maxi∈[0,q2]{Xi} with Xi ∼ B(τ, p), and
Y = maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1

N ).

Proof. In this proof, we will adopt a game hopping strategy in order to find the upper bound. We note
Pri[Forge] the probability of forgery when considering game i.

The first game will be the access to the standard signing oracle by the adversary A. We will then game hop
in order to eliminate the cases where collisions happen, and, through some other games, we will manage to
find an upper bound. The aim of the proof is to find this bound on Pr1[Forge].

– Game 1:
This is the interaction between A and the real signature scheme.
KeyGen generates (H,y) and x, and A receives (H,y). A can make queries to each Hi independently,
and can make signing queries. At the end of the attack, A outputs a message/signature pair, (m,σ). The
event Forge happens when the message output by A was not previously used in a query to the signing
oracle.

– Game 2:
In this game, we add a condition to the success of the attacker. The condition we add is that if there is
a collision between outputs of H0, or H1, or H3, then, the forgery isn’t valid.
The first step is to look at the number of times every Hi is called when calling the signing oracle. For
H0, we make τ · N queries. The signing oracle contains also τ calls to H1, one to H2, τ · D to H3, and
finally, a single one to H4.
The number of queries to H0 or H1 or H3 is then bounded from above by q + τ ·N · qS .
We can then have the following result (it comes simply from the probability to have at least one collision
with q + τ ·N · qS values):

|Pr1[Forge]− Pr2[Forge]| ≤
3 · (q + τ ·N · qS)2

2 · 2λ

– Game 3:
The attacker now fails if the inputs to any of the Hi has already appeared in a previous query. If that
happens, this means that at least the salt used was the same (we emphasize on at least). We have one salt
sampled every time a query is made to the signing oracle, and it can collide each time with: a previous
salt, or any of the queries to the Hi. This means, we can bound this with:

|Pr2[Forge]− Pr3[Forge]| ≤
qS · (qS + q0 + q1 + q2 + q3 + q4)

2λ
≤ qS · (qS + 5q)

2λ

– Game 4:
To answer the signing queries, we now use the HVZK simulator built in the previous proof, in order to
generate the views of the open parties. By security of the PRG, the difference with the previous game is:

|Pr7[Forge]− Pr6[Forge]| ≤ ϵPRG

– Game 5:
Finally, we say that an execution e∗ of a query h2 = H4(m, salt, h1, H

(e)
1 . . . H

(e)
D e∈[1,τ ]) defines a good

witness x if:

• Each of the H
(e)
k are the output of a query to H3

• h1 is the output of a query to H2, i.e.:

h1 = H2(salt,m, h
(1)
0 , . . . , h

(τ)
0 )
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• Each h
(e)
0 is the output of a query to H1, i.e.:

h
(e)
0 = H1(cmt

(e)
1 , . . . , cmt

(e)
N )

• Each cmt
(e)
i is the output of a query to H0, i.e.:

cmt
(e)
i = H0(salt, e, i, state

(e)
i )

• The vector x ∈ Fk
q defined by states {statei}i∈[1,N ] is a correct witness, i.e.: Hx = y such that

WR(E) ≤ r. In the case where an execution like this happens, we are able to retrieve the correct
witness from the states {statei}i∈[1,N ], and as a consequence, we are able to solve the Rank-SD
instance. This means that Pr8[Solve] ≤ ϵRSD.

Finally, we only need to look at the upper bound of
∣∣Pr8[Forge ∩ Solve]

∣∣. This probability is upper bounded
by the value

Pr[X + Y = τ ]

where X = maxi∈[0,q2]{Xi} with Xi ∼ B(τ, p), Y = maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1
N ). We explain

this bound below:

Solve does not happen here, meaning that, to have a forgery after a query to H4, A has no choice but to
cheat either on the first round or on the second one.

Cheating at the first round. For any query Q2 to H2, we call the output of this query h1. For any query Q2,
if a false positive appears in a round e with this value of h1, then we add this round e to the set we call
G2(Q2, h1). This means that Pr(e ∈ G2(Q2, h1) | Solve) ≤ p. Since the response h1 is uniformly sampled,
each round e has the same probability to be in the set G2(Q2, h1). This means that #G2(Q2, h1) follows
the binomial distribution XQ2 = B(τ, p). We can then define (Q2best, h1best) such that #G2(Q2, h1) is
maximized, i.e,

#G2(Q2best, h1best) ∼ X = max{XQ2}(Q2∈Q2)

Cheating at the second round. Now, we need to look at the cheating in the second round, i.e, the queries
to H4. We will note this query Q4, with the output of this query h2. For the signature to be accepted, we
know that, if in a round, the prover sends a wrong value of h1, then he needs to cheat on exactly one party
(it is already established that is isn’t possible to cheat on less, or on more, than one party). He only needs
to cheat when the value of h(e)

1 is wrong, i.e, he needs to cheat for every round e /∈ G2(Q2best, h1best).
Since every time he cheats, the probability to be detected is 1

N , it is easy to see the probability that the

verification outputs ACCEPT is upper bounded by
(

1
N

)τ−#G2(Q2best,h1best)

The probability that the prover is accepted on one of the q4 queries is then upper bounded by 1−

(
1−

(
1
N

)τ−τ1)
where τ1 = #G2(Q2best, h1best). By summing over all values of τ1 possible, we have then the

upper bound:

Pr8(Forge ∩ Solve) ≤ Pr(X + Y = τ)

where X is as before, and Y = max{YQ2}(Q2∈Q2)
where the YQ2 are distributed following B(τ −X, 1

N ).

All that is left to do is then to compute the sum of all the upper bounds we retrieved: this gives us the
wanted result.
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5.2.2 Threshold-RYDE We compute now the probability to forge the signature based on the MPC
threshold.

Theorem 8. Let the signature be (t, ϵPRG)-secure and with adversary of advantage at most ϵRSD against
the underlying Rank-SD problem. Let H0, H1, H2 and HM be random oracles with output length 2λ bits. The
probability of such an adversary producing an existential forgery under chosen message attack (EUF-CMA)
is bounded from above by:

Pr[Forge] ≤ ·(q + τ · (2N − 1) · qS)2

2λ
+

qS · (qS + 3q)

2λ
+ qS · τ · ϵPRG + Pr[X + Y = τ ] + ϵRSD

where τ is the number of rounds of the signature, p = 1
qmη +

(
1− 1

qmη

)
1

qmη the false positive rate of the MPC

protocol, X = maxi∈[0,q1]{Xi} with Xi ∼ B(τ,
(

N
ℓ+1

)
· p), and Y = maxi∈[0,q2]{Yi} with Yi ∼ B

(
τ −X, 1

(Nℓ )

)
.

Proof. The proof is based on the same operation as the previous one, adopting a game hopping strategy.
The first game will be the access to the standard signing oracle by the adversary A. The aim of the proof is
to find this bound on Pr1[Forge].

– Game 1:
This is the interaction between A and the real signature scheme.
KeyGen generates (H,y) and x, and A receives (H,y). A can make queries to each Hi independently,
and can make signing queries. At the end of the attack, A outputs a message/signature pair, (m,σ). The
event Forge happens when the message output by A was not previously used in a query to the signing
oracle.

– Game 2:
We add a condition to the success of the attacker now. If there is a collision in the outputs of H0 or
on HM , then the forgery isn’t valid. Here, H0 is called q0 times by A, HM qM times. When A calls the
signing oracle, there are in total: τ ·N calls to H0, τ · (2N − 1) calls to HM , and one to H1 and H2. In
this game, only H0 and HM are of interest. We can then give an upper bound to the queries made by A
to the hash functions, which is then: q+ τ · (2N − 1) · qS where qS is the number of queries to the signing
oracle.
When making this many queries, we can now bound from above the probability of having a collision,
with

|Pr1[Forge]− Pr2[Forge]| ≤
(q + τ · (2N − 1) · qS)2

2λ

– Game 3:
The attacker now fails if the inputs to any of the hash functions has already appeared in a previous
query. If that happens, this means that at least the salt used was the same. Since we don’t use salt in the
Merkle Tree, this will only concern H0,H1,H2. We sample salt qS time (once by signing oracle query),
and 3q times as well (each time we call H0,H1 or H2). If there is an input which already appears for HM ,
this must be because a collision has been found either on HM or on H0. However, we already excluded
this in Game 2. This means we can give the following bound:

|Pr2[Forge]− Pr3[Forge]| ≤
qS · (qS + q0 + q1 + q2)

2λ
≤ qS · (qS + 3q)

2λ

– Game 4:
To answer the signing queries, we now use the HVZK simulator built in the previous proof, in order to
generate the views of the open parties. By security of the PRG, the difference with the previous game is:

|Pr7[Forge]− Pr6[Forge]| ≤ ϵPRG
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– Game 5:
Finally, we say that an execution e∗ of a query h2 = H2(m, pk, salt, h1, (Jα(e)Ki, Jv(e)Ki)i∈S,e∈[1,τ ]) defines
a good witness x if:

• h1 is the output of a query to H1, i.e,

h1 = H2(salt,m, h
(1)
0 , . . . , h

(τ)
0 )

• Each h
(e)
0 is the output of a query to the MerkleTree oracle, i.e,

h
(e)
0 = Merkle(cmt

(e)
1 , . . . , cmt

(e)
N )

• Each cmt
(e)
i is the output of a query to H0, i.e,

cmt
(e)
i = H0(salt, e, i, state

(e)
i )

• The vector x ∈ Fk
q defined by states {statei}i∈S is a correct witness, i.e.: Hx = y such that WR(E) ≤

r.

In the case where an execution like this happens, we are able to retrieve the correct witness from the
states {statei}i∈[1,N ], and as a consequence, we are able to solve the Rank-SD instance. This means that
Pr8[Solve] ≤ ϵRSD.

Finally, we only need to look at the upper bound of
∣∣Pr8[Forge ∩ Solve]

∣∣. This probability is upper bounded
by the value

Pr[X + Y = τ ]

with X = maxi∈[0,q2]{Xi} with Xi ∼ B(τ,
(

N
ℓ+1

)
· p), Y = maxi∈[0,q4]{Yi} with Yi ∼ B(τ −X, 1

(Nℓ )
) and

where p = 1
qmη +

(
1− 1

qmη

)
1

qmη .
This result comes directly from [FR22, Lemma 6 and Theorem 4, Appendix F].

All that is left to do is then to compute the sum of all the upper bounds we retrieved: this gives us the
wanted result.

6 Known Attacks

6.1 Attacks against Fiat-Shamir signatures

There are several attacks against signatures from zero-knowledge proofs obtained thanks to the Fiat-Shamir
heuristic. [AABN02] propose an attack more efficient than the brute-force one for protocols with more than
one challenge, i.e. for protocols of a minimum of 5 rounds.

Kales and Zaverucha proposed in [KZ20] a forgery achieved by guessing separately the two challenges of
the protocol. It results an additive cost rather than the expected multiplicative cost. The cost associated
with forging a transcript that passes the first 5 rounds of the Proof of Knowledge (Fig.3 or Fig.8) relies
on achieving an optimal trade-off between the work needed for passing the first step and the work needed
for passing the second step. To achieve the attack, one can find an optimal number of repetitions with the
formula:

τ1 = arg min
0≤τ≤r

{
1

P1
+ P r−τ1

2

}
where P1 and P2 are the probabilities to pass respectively the first and the second challenge.

In the case of the additive case, one obtains:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′

(
τ
i

)
pi(1− p)τ−i

+ (N)τ−τ
′

}
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with p = 2
qmη − 1

q2mη .

In the case of low-threshold case, one obtains:

costforge = min
0≤τ ′≤τ

{
1∑τ

i=τ ′

(
τ
i

)
p′i(1− p′)τ−i

+

(
N

ℓ

)τ−τ ′}

with p′ =
(

2
qmη − 1

q2mη

)(
N
ℓ+1

)
.

6.2 Attacks against Rank-SD problem

We give the complexity of the main attacks against the Rank-Syndrome-Decoding problem. The interested
reader can found the detailed attacks and proofs in [ABB+23].

The enumeration of basis is a combinatorial attack which consists in trying all the different possible supports
fof the error. The complexity of this attack is upper bounded by:

O((nr +m)3q(m−r)(r−1))

.

An other combinatorial attack is the error support attack, which is the adaptation of the information set
decoding attack used in Hamming metric. It consists in guessing a set of n − k coordinates which contains
the support of the vector x to obtain a system of n− k equations with n−k variables, for which there exists
often a solution. This attack can be achieved with an average complexity:

O((n− k)3m3q(r−1)⌊
(k+1)m

n ⌋)

There exists also algebraic attacks to solve the system of equations Hx = y using computer algebra tech-
niques like Gröbner basis. Today, the best algebraic modelings for solving the Rank-SD problem are the
MaxMinors modeling [BBB+20,BBC+20] and the Support Minors modeling [BBC+20,BBB+22]. The final
cost in Fq operations is given by:

O
(
m2NMω−1) ,

where

N =

k∑
i=1

(
n− i

r

)(
k + b− 1− i

b− 1

)
−
(
n− k − 1

r

)(
k + b− 1

b

)

− (m− 1)

b∑
i=1

(−1)i+1

(
k + b− i− 1

b− i

)(
n− k − 1

r + i

)
.

M =

(
k + b− 1

b

)((
n

r

)
−m

(
n− k − 1

r

))
.

and ω is the linear algebra constant.
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